Bir kama ürünü içinde dış diferansiyel/türevi taşıma

Dec 15 2020

Varsayımlar : Let$M$pürüzsüz olmak$m$-manifold. (Gerekirse: Bırakın$M$yönlendirilebilir ve sonra yönlendirilebilir olun. İzin vermek$M$kompakt olun. İzin vermek$(M,g)$Riemann manifoldu olsun.)

İzin vermek$\Omega^jM$pürüzsüz kümesi olmak$k$-formlar$M$, için$j=0, 1, ..., m$. İzin vermek$d_j: \Omega^jM \to \Omega^{j+1}M$dış diferansiyel / türev olmak$\Omega^jM$(dayalı$d: \Omega(M) \to \Omega(M)$, ile birlikte$\Omega(M)$ $:= \bigoplus_{j=0}^{m} \Omega^jM$).

İzin vermek$k \in \{0, 1, ..., m\}$. İzin vermek$(\alpha, \gamma) \in \Omega^kM \times \Omega^{m-(k+1)}M$.

gözlemler :

  1. $d_k \alpha \wedge \gamma$pürüzsüz bir üst formdur (aka pürüzsüz$m$-form)
  2. $(-1)^{1+k^2} \alpha \wedge d_{m-(k+1)}\gamma$pürüzsüz bir üst formdur (aka pürüzsüz$m$-form)

Soru 1 : Yukarıdaki gözlemlerin doğru olduğunu varsayarsak, eşitler mi?

Soru 2 : Genel olarak, dış diferansiyel/türevi kama çarpımlar arasında hareket ettirip sadece çarpabilir miyiz?$(-1)^{\text{something}}$?

Soru 3 : Yukarıdaki herhangi bir şeyde, herhangi bir ek şey varsayıyor muyuz?$M$yönlendirilebilir/yönelimli/kompakt/Riemannian gibi mi?

Soru 4 : 1. soruya hayır ise, o zaman 2 formun her birinin en azından eşit integralleri var mı, yani her birini bağladığımızda elde ettiğimiz değerler$\int_M$eşit mi? Burada, şimdi varsayıyoruz$M$yönlendirilebilir ve sonra yönlendirilir ve sanırım kompakttır (aksi takdirde formların kompakt desteğe veya başka bir şeye sahip olduğunu varsaymamız gerekir).


Bağlam : Bu, Hodge yıldız operatörünün tanımı da dahil olmak üzere Hodge ayrıştırma teoremine yol açan bazı tanım ve önermelerden gelir, ancak Hodge olmayan kısımları doğru anlayıp anlamadığımı görmeye çalışıyorum. ($\gamma$aslında bazılarının görüntüsü$\beta \in \Omega^{k+1}M$Hodge-yıldız operatörü altında.)

Yanıtlar

3 Didier Dec 15 2020 at 19:07

İşte bir cevap denemesi.

Soru 1 Böyle bir eşitliğe gerek yok. doğru olan şu ki$$ d\left(\alpha\wedge \gamma \right) = d\alpha \wedge \gamma + (-1)^{\deg\alpha}\alpha \wedge d\gamma $$

Ve eşitliğinizin doğru olduğunu varsaymak, şu konuda bir varsayıma yol açacaktır:$d(\alpha\wedge\gamma)$

İşte somut bir karşı örnek:\begin{align} \alpha &= dx^1 & \gamma = x^2dx^3\wedge\cdots\wedge dx^n \\ d\alpha \wedge \gamma &= 0 & \alpha \wedge d\gamma = dx^1\wedge\cdots\wedge dx^n \end{align}

2. soru cevap hayır. Yukarıyı görmek.

Yukarıdaki soru 3 , hesaplamalar yereldir, bu nedenle kompaktlığa veya yönlendirilebilirliğe bağlı değildir: karşı örneği bir grafiğin dışına sıfırla genişletin.

4. sorunun cevabı hala hayır: Yukarıdaki karşı örnekte,$d\alpha\wedge \gamma = 0$, dolayısıyla sıfır integrali vardır, ancak$\alpha\wedge d\gamma$yönlendirilebilir bir manifold üzerindeki bir hacim formudur, sıfırdan farklı bir integrali vardır.

@ JanBohr'un cevabı ile ilgili olarak (ki bu, kendi kendine atıfta bulunan iki cevaba yol açar), bu durumda bunu eklemeliyim.$M$yönlendirilir, o zaman Stokes teoremi şunu belirtir:$$ \int_M d(\alpha\wedge \gamma) = \int_{\partial M} \alpha\wedge \beta $$ve böylece,$$ \int_M d\alpha \wedge \gamma = (-1)^{\deg \alpha+1}\int_{M}\alpha\wedge d\gamma + \int_{\partial M}\alpha\wedge \gamma $$ve böylece en kısa sürede bir eşitlik (imzaya kadar) vardır.$M$sınırı yoktur veya$\alpha\wedge \gamma$sıfır$\partial M$.

2 JanBohr Dec 15 2020 at 19:09

Dış diferansiyelin tanımlayıcı özelliklerinden biri Leibniz kuralıdır.$$d(\alpha\wedge \gamma)=d\alpha\wedge \gamma+(-1)^{k} \alpha\wedge d\gamma,$$nerede$k$derecesi$\alpha$örneğin wikipedia'da bkz . Bu, keyfi düz manifoldlar için geçerlidir, Riemann metriğine veya oryantasyonuna gerek yoktur. Olarak$k$ve$k^2$aynı pariteye sahipseniz, önceki ekranda sağ taraf tam olarak ikiniz arasındaki farktır.$m$-formlar. Özellikle onlar eşittir$\alpha \wedge \gamma$kapalı. Her ikisinin üzerindeki integral$m$-formlar, söyle eğer$M$yönlendirilmiş ve kompakt, aynıdır, çünkü tam bir formun integrali Stokes' teoremi ile sıfırdır.

@DIdier_'in 4. soru için verdiği karşı örnekle ilgili olarak: Bu, Stokes teoremindeki sınır integralinin kaybolmadığı bir durumdur (herhangi bir düzgün bölge için).$\mathbb{R}^n$). Yukarıda varsayarak bu sorundan kaçınıyorum$M$sınırsız olmak. Başka bir çıkış yolu olduğunu varsaymak$\alpha $ve$\gamma$iç kısımda kompakt bir desteğe sahiptir.