Skaler ve vektör arasında çarpım yapmanın doğru yolu nedir?
Matris çarpımı kuralı, sol işlenenin sütun sayısının sağ işlenenin satır sayısına eşit olduğunu belirtir.
$M*N$ M varsa $n$ sütun ve N olmalıdır $n$ satırlar.
Bu geleneği takiben, bir vektör ile bir skaler arasında bir çarpma yazmanın doğal yolu, vektörü sol tarafa koymaktır - skaleri 1'e 1 matris olarak alarak.
ancak, çoğu zaman insanların yukarıdaki kurala uymadıklarını buldum: örnek olarak öz ayrıştırmayı kullanarak:
öz ayrıştırma wiki'si
$A\upsilon=\lambda\upsilon$
Sol tarafa skaler koymamız gerektiğinde bize rehberlik edecek herhangi bir pratik kural var mı?
Yanıtlar
Skaler çarpma ve matris çarpımı 2 ayrı işlemdir. İçlerinde aynı "çarpma" kelimesine sahip olsalar bile - tamamen farklıdırlar.
Matris çarpımı değişmeli değildir - bu yüzden doğru matrisi sağ tarafa koymanız gerekir , bu konvansiyonlarla ilgili değildir. Skalarlar değişkendir ve onları her iki tarafa da koyabilirsiniz.
Yazılı bir kural olduğunu sanmıyorum - insanlar katsayıları diğer terimlerden önce koymaya alıştılar. Sağa bir skaler koyarsanız, çalıştığınız alana bağlı olarak bazı kişilerde ifadelerinizi okuyarak durabilir ve "hugh, bekleyin, değişmeli olmayan cebirle mi çalışıyoruz?" bir an için. Ayrıca bazı insanlar "hugh, bu bir skaler mi yoksa bir şey mi kaçırıyorum?" Diye düşünebilir. Bir okuyucu için fazladan beyin döngüsü gerektirebilir, bu yüzden skalerleri solda tutardım, ancak diğer tarafa koyarsanız muhtemelen trajedi olmayacaktır.
Skaler çarpımı kullanarak taklit etmek mümkün olsa da$1\times n$ veya $n \times 1$matrisler - özünde olan bu değil. Yine - bunlar farklı işlemlerdir ve sadece biri değişmeli.
Bu sadece bir temsili konvansiyon meselesidir. Genellikle bir vektör uzayının aksiyomları, formda skaler çarpım yazılarak formüle edilir.$$\lambda \cdot v$$ nerede $v \in V$ ve $\lambda$ yer alanına aittir $K$. Nedeni, genellikle üründe bunu anlamamızdır.$\mu \cdot \lambda$ öğelerinin $K$bir ilk faktörümüz var$\mu$ve ikinci bir faktör$\lambda$. Çarpımı değişmeli olan bir alanda faktörlerin sıralaması alakasız görünüyor (çünkü$\mu \cdot \lambda = \lambda \cdot \mu$), ancak bir halkada $R$(çarpımı genellikle değişmezdir) sıra esastır. Bu, örneğin halkası için geçerlidir.$n\times n$-bir alan üzerinde matrisler. Bir vektör uzayının aksiyomlarından biri$$(\mu \cdot \lambda) \cdot v = \mu \cdot (\lambda \cdot v)$$ sağdan skaler çarpım ile yazılan aynı formülden anımsatıcı olarak daha kolaydır $$v \cdot (\mu \cdot \lambda) = (v \cdot \lambda) \cdot \mu .$$ Tamam, bir alan için bu, aynı şeyi söylediği için pek bir fark yaratmaz. $$v \cdot (\lambda \cdot \mu) = (v \cdot \lambda) \cdot \mu .$$Ancak, bir vektör uzayı kavramının bir halka üzerindeki bir modülün kavramına genelleştirilebileceğini unutmayın.$R$ve burada düzen bir fark yaratır. Aslında, sol ve sağ arasında ayrım yapılır$R$-modüller. Sol için$R$-modüller genellikle skaler mutliplikasyonu şöyle yazar: $\lambda \cdot v$doğru $R$-modüller olarak $v \cdot \lambda$. Buraya bakın .
Şimdi sorunun özüne gelelim. Matris çarpımı$A \bullet B$ genellikle bir $m\times n$ matris $A$ ve bir $n\times p$ matris $B$, yani sütun sayısının $A$ satır sayısına eşittir $B$. Dediğin gibi, skaler$\lambda$ kabul edilebilir $1 \times 1$ matris $(\lambda)$. Böylece aşağıdaki iki ifade tanımlanmıştır:$$(\lambda) \bullet A \text{ for } 1 \times n \text{ matrices } A \tag{1} $$ $$A \bullet (\lambda) \text{ for } n \times 1 \text{ matrices } A \tag{2} $$ İçinde $(1)$ $A$denen satır vektörü içinde,$(2)$bir sütun vektörü .
Bu nedenle, en sevdiğiniz notasyona bağlıdır: $K^n$ satır vektörleri olarak kullanmanız gerekir $(1)$, bunları sütun vektörleri olarak görürseniz, yazmanız gerekir $(2)$.
Her neyse, bu yalnızca aşağıdakilerin skaler çarpımını anlamakta ısrar ediyorsanız geçerlidir .$\lambda$ ve $A$matris çarpımı olarak. Genellikle için$A = (a_{ij})$ basitçe tanımlar $$ \lambda \cdot (a_{ij}) = (\lambda \cdot a_{ij}) .$$ Bunu yapmak, aşağıdakilerin unsurlarını dikkate alıp almamanız önemli değil $K^n$ satır vektörleri veya sütun vektörleri olarak.