Esiste un database sui valori particolari di $j$-invariant?

Dec 26 2020

Esiste un database che abbia tutti i valori particolari noti di $j$-invariant?

Risposte

7 JoeSilverman Dec 26 2020 at 04:52

Cosa intendi per "conosciuto"? Per ogni$\tau\in\mathbb C$ con $\text{Im}(\tau)>0$, si può calcolare $j(\tau)$con la precisione consentita dal proprio computer, ma presumibilmente non è questo che intendi. In generale, se$\tau$ è algebrico e $[\mathbb Q(\tau):\mathbb Q]\ge3$, poi $j(\tau)$ è trascendentale $\mathbb Q$, quindi è necessario spiegare cosa significherebbe "conoscere" il valore. quando$\tau$ è quadratico finito $\mathbb Q$, la curva ellittica associata ha CM e $j(\tau)$ genera il campo della classe Hilbert di $\mathbb Q(\tau)$. In tal caso, si può in linea di principio determinare il campo e quindi scrivere$j(\tau)$in termini di base per quel campo. È questo che vuoi dire? Se è così, sono sicuro che molti esempi sono stati elaborati nel corso degli anni, ma non sono a conoscenza di un luogo in cui sono stati compilati. Anche se presumibilmente sono stati fatti per tutti i campi quadratici immaginari di un piccolo numero di classe. C'è un calcolo di esempio per$\tau=\frac{1+\sqrt{-15}}{2}$nel mio libro Argomenti avanzati nel libro Aritmetica delle curve ellittiche (Esempio II.6.2.2), dove viene mostrato che$$ j\left(\frac{1+\sqrt{-15}}{2}\right) = -52515-85995\frac{1+\sqrt{5}}{2}. $$ (Il campo $\mathbb Q(\sqrt{-15})$ ha il numero di classe 2 e il suo campo di classe Hilbert è $\mathbb Q(\sqrt{-15},\sqrt5)$.)

1 KhashF Jan 27 2021 at 14:01

Qualsiasi database (finito) contenente espressioni esplicite per j-invarianti di curve ellittiche con CM può essere esteso aggiungendo j-invarianti di curve ellittiche isogene. Data una curva ellittica$E$ nella sua forma Weierstrass e un sottogruppo finito $F$di esso, un classico articolo di Velu fornisce equazioni esplicite per$E':=E/F$ e l'isogenesi $E\rightarrow E'$. Supponiamo ora che ci stiamo lavorando$\Bbb{C}$ e lo sappiamo $E$ è isomorfo a $\frac{\Bbb{C}}{\Bbb{Z}+\Bbb{Z}\tau}$, da qui la conoscenza del valore speciale $j(\tau)$. Il$j$-variante di $E'$, che può essere calcolato esplicitamente utilizzando la sua equazione, quindi restituisce un altro valore speciale $j(\tau')$ del modulare $j$-funzione dove $\tau'$ è un periodo di $E'$. In alternativa, si può partire dalla curva target e salire per ottenere il$j$-variante di una curva ellittica sopra di essa. Per fare ciò, supponiamo una forma Legendre$y^2=x(x-1)(x-\lambda)$ per una curva ellittica CM $\frac{\Bbb{C}}{\Bbb{Z}+\Bbb{Z}\tau}$ è fornito ($\lambda$è un numero algebrico). In altre parole, supponiamo di averlo fatto$j(\tau)=256\frac{(\lambda^2-\lambda+1)^3}{(\lambda^2-\lambda)^2}$nel nostro database. Considera l'isogenesi$\frac{\Bbb{C}}{\Bbb{Z}+\Bbb{Z}(2\tau)}\rightarrow\frac{\Bbb{C}}{\Bbb{Z}+\Bbb{Z}\tau}$. Analizzando possibili forme Legendre per$\frac{\Bbb{C}}{\Bbb{Z}+\Bbb{Z}(2\tau)}$, si può mostrare il suo $j$-invariant $j(2\tau)$ appartiene a $$\left\{16\frac{(u+\frac{1}{u}+14)^3}{(u+\frac{1}{u}-2)^2}\,\Big|\,u\in\left\{\lambda,1-\lambda,1-\frac{1}{\lambda}\right\}\right\}.$$ Quindi ci sono tre candidati per $j(2\tau)$, ciascuno sotto forma di un numero algebrico esplicito. Approssimativo$j(2\tau)$ numericamente tramite il $q$-espansione, si può scegliere l'espressione corretta per $j(2\tau)$tra di loro e aggiungerlo al database. I dettagli di questo approccio per il calcolo$j(2\tau)$ in termini di $j(\tau)$può essere trovato in questo documento . Esiste un metodo analogo per$j(3\tau)$. Quindi iniziando con per esempio$j(i)=1728$, per due numeri interi positivi $m$ e $n$, un'espressione esatta per $j\left(2^m3^ni\right)$può essere ottenuto. Per esempio$j(2i)=66^3$ e $j(3i)= 64(387+224\sqrt{3})^3(97−56\sqrt{3})$.