Mute, por linha, com base em strings correspondentes ou NA em um subconjunto de colunas

Aug 19 2020

Algum conselho sobre como combinar strings, dentro de uma linha, em várias colunas?

Adaptado de Remover linhas onde todas as variáveis ​​são NA usando dplyr onde elas estão correspondendo apenas a NAs nas colunas e filtrando-as - não criando uma nova variável.

Exemplo de brinquedo:

library(dplyr)
df <- tibble(a = c('a', 'a', 'a', NA), 
             b1 = c('b', 'c', NA, NA), 
             b2 = c('d', NA, NA, NA),
             b3 = c('e', NA, NA, NA),
             b4 = c('f', NA, NA, NA))
df

# A tibble: 4 x 5
  a     b1    b2    b3    b4   
  <chr> <chr> <chr> <chr> <chr>
1 a     b     d     e     f    
2 a     c     NA    NA    NA   
3 a     NA    NA    NA    NA   
4 NA    NA    NA    NA    NA 

Para criar uma nova variável all_nase toda a linha for NA:

df %>% 
  rowwise() %>% 
  mutate(all_na = all(is.na(across())))


# A tibble: 4 x 6
# Rowwise: 
  a     b1    b2    b3    b4    all_na
  <chr> <chr> <chr> <chr> <chr> <lgl> 
1 a     b     d     e     f     FALSE 
2 a     c     NA    NA    NA    FALSE 
3 a     NA    NA    NA    NA    FALSE 
4 NA    NA    NA    NA    NA    TRUE   

Para criar uma nova variável se apenas um subconjunto das colunas (começando com 'b') for NAb_is_na

df %>% 
  rowwise() %>% 
  mutate(b_is_na = all(is.na(across(starts_with('b'))))) %>% 
  ungroup()

# A tibble: 4 x 6
  a     b1    b2    b3    b4    b_is_na
  <chr> <chr> <chr> <chr> <chr> <lgl>  
1 a     b     d     e     f     FALSE  
2 a     c     NA    NA    NA    FALSE  
3 a     NA    NA    NA    NA    TRUE   
4 NA    NA    NA    NA    NA    TRUE   

Pergunta:

No entanto, não tenho certeza de como criar uma variável se dentro de uma linha, para um subconjunto de colunas for uma correspondência de string OR NA, por exemplo,'c' or NA

Saída desejada:

# A tibble: 4 x 6
  a     b1    b2    b3    b4    b_is_na
  <chr> <chr> <chr> <chr> <chr> <lgl>  
1 a     b     d     e     f     FALSE  
2 a     c     NA    NA    NA    TRUE  
3 a     NA    NA    NA    NA    TRUE   
4 NA    NA    NA    NA    NA    TRUE   

Respostas

1 akrun Aug 19 2020 at 02:58

Uma base Ropção e uma opção vetorizada eficiente estariam rowSumsem uma lógicamatrix

nm1 <- startsWith(names(df), 'b')
df$b_is_na <- rowSums(df[nm1] == 'c'|is.na(df[nm1])) > 0
df$b_is_na
#[1] FALSE  TRUE  TRUE  TRUE

Também pode ser usado com omutate

library(dplyr)
df %>%
  mutate(b_is_na = rowSums(select(., starts_with('b')) == 
             'c'|is.na(select(., starts_with('b')))) > 0)
# A tibble: 4 x 6
#  a     b1    b2    b3    b4    b_is_na
#  <chr> <chr> <chr> <chr> <chr> <lgl>  
#1 a     b     d     e     f     FALSE  
#2 a     c     <NA>  <NA>  <NA>  TRUE   
#3 a     <NA>  <NA>  <NA>  <NA>  TRUE   
#4 <NA>  <NA>  <NA>  <NA>  <NA>  TRUE 

NOTA: Usar rowwiseseria uma maneira ineficiente

Ou com c_across, mas pode não ser tão ideal

df %>% 
   rowwise %>%
   mutate(b_is_na = {
        tmp <- c_across(starts_with('b'))
         any(is.na(tmp)|tmp == 'c') }) %>%
   ungroup
# A tibble: 4 x 6
#  a     b1    b2    b3    b4    b_is_na
#  <chr> <chr> <chr> <chr> <chr> <lgl>  
#1 a     b     d     e     f     FALSE  
#2 a     c     <NA>  <NA>  <NA>  TRUE   
#3 a     <NA>  <NA>  <NA>  <NA>  TRUE   
#4 <NA>  <NA>  <NA>  <NA>  <NA>  TRUE