Pedido de referência: Uma generalização multidimensional do teorema fundamental do cálculo
$\newcommand\R{\mathbb R}$Deixar $f\colon\R^p\to\R$ser uma função contínua. Para$u=(u_1,\dots,u_p)$ e $v=(v_1,\dots,v_p)$ dentro $\R^p$, deixar $[u,v]:=\prod_{r=1}^p[u_r,v_r]$; $u\wedge v:=\big(\min(u_1,v_1),\dots,\min(u_p,v_p)\big)$; $u\vee v:=\big(\max(u_1,v_1),\dots,\max(u_p,v_p)\big)$; $$\int_u^v dx\, f(x):= (-1)^{\sum_{r=1}^p\,1(u_r>v_r) }\int_{[u\wedge v,u\vee v]}dx\,f(x).$$ Deixar $F\colon\R^p\to\R$ ser qualquer antiderivada de $f$, no sentido de que $$D_1\cdots D_p F=f,$$ Onde $D_j$ é o operador da diferenciação parcial em relação ao $j$o argumento; presume-se que o resultado dessa diferenciação parcial repetida não depende da ordem dos argumentos a respeito dos quais as derivadas parciais são tomadas. Deixar$[p]:=\{1,\dots,p\}$. Para cada conjunto$J\subseteq[p]$, deixar $|J|$ denotam a cardinalidade de $J$.
Então não é difícil estabelecer a seguinte generalização multidimensional do teorema fundamental do cálculo ( Lema 5.1 ): \ begin {equation} \ int_u ^ v dx \, f (x) = \ sum_ {J \ subseteq [p]} ( -1) ^ {p- | J |} F (v_J), \ end {equation} onde$v_J:=\big(v_1\,1(1\in J)+u_1\,1(1\notin J),\dots,v_p\,1(p\in J)+u_p\,1(p\notin J)\big)$.
Alguém viu esta ou uma declaração semelhante em outro lugar? (Estou apenas perguntando sobre referências, não provas.)
Respostas
Para um fato elementar como este, que pode ter sido reinventado mil vezes, é difícil encontrar o primeiro papel onde isso apareceu. No entanto, deixe-me dar um contexto ausente. Existe toda uma indústria na teoria quântica de campos construtiva e na mecânica estatística sobre fórmulas de interpolação "inteligentes" relacionadas ou fórmulas de Taylor com restos integrais. Eles são usados para realizar as chamadas expansões de cluster . Para a identidade do OP, não há perda de generalidade na tomada$u=(0,0,\ldots,0)$ e $v=(1,1,\ldots,1)$. Neste caso, via inversão de Möbius na rede booleana , a fórmula vem da seguinte identidade.
Deixar $L$ser um conjunto finito. Deixar$f:\mathbb{R}^L\rightarrow \mathbb{R}$, $\mathbf{x}=(x_{\ell})_{\ell\in L}\mapsto f(\mathbf{x})$ seja uma função suficientemente suave, e deixe $\mathbf{1}=(1,\ldots,1)\in\mathbb{R}^L$, então $$ f(\mathbf{1})=\sum_{A\subseteq L}\int_{[0,1]^A}d\mathbf{h} \left[\left(\prod_{\ell\in A}\frac{\partial}{\partial x_{\ell}}\right)f\right](\psi_A(\mathbf{h})) $$ Onde $\psi_A(\mathbf{h})$ é o elemento $\mathbf{x}=(x_{\ell})_{\ell\in L}$ de $\mathbb{R}^L$ definido a partir do elemento $\mathbf{h}=(h_{\ell})_{\ell\in A}$ dentro $[0,1]^A$ pela regra: $x_{\ell}=0$ E se $\ell\notin A$ e $x_{\ell}=h_{\ell}$ E se $\ell\in A$. Claro, é preciso 1) aplicar isso a todos$L$de que são subconjuntos de $[p]$, 2) usar a inversão de Möbius na rede Booleana, e 3) especializar-se em $L=[p]$, e isso dá a identidade do OP.
A fórmula acima é a mais ingênua de seu tipo, usada para fazer uma expansão de cluster de "par de cubos". Veja a fórmula III.1 no artigo
A. Abdesselam e V. Rivasseau, "Árvores, florestas e selvas: um jardim botânico para expansões de cluster" .
Também é explicado em palavras na página 115 do livro
V. Rivasseau, "From Perturbative to Constructive Renormalization" .
Agora, a fórmula é um caso particular de um muito mais poderoso, a saber, Lema 1 em
A. Abdesselam e V. Rivasseau, "Uma expansão de cluster multiescala explícita de campo grande versus pequeno" ,
onde se soma as sequências "permitidas" $(\ell_1,\ldots,\ell_k)$ de comprimento arbitrário de elementos de $L$, em vez de subconjuntos de $L$. A noção de permitido é baseada em uma regra de parada arbitrária. A identidade acima corresponde a "permitido"$=$"sem repetições", ou a regra de parada de que não se deve dobrar em um $\ell$no final de uma sequência onde já apareceu. Ao jogar com esse tipo de escolha de regra de parada, pode-se usar o Lema 1 do meu artigo com Rivasseau, para provar a fórmula Hermite-Genocchi, a fórmula anisotrópica de Taylor de Hairer no Apêndice A de "Uma teoria das estruturas de regularidade" e muitas outras coisas . Quando$f$ é o exponencial de uma forma linear, por exemplo, pode-se obter várias identidades algébricas como nos postes de MO
identidade de função racional
Identidade envolvendo soma sobre permutações
Esqueci de mencionar, pode-se usar o Lema 1 para derivar a fórmula de Taylor do cálculo 1. Isso corresponde a $L$ tendo um elemento e definindo as sequências permitidas como aquelas de comprimento no máximo $n$. Ver
https://math.stackexchange.com/questions/3753212/is-there-any-geometrical-intuition-for-the-factorials-in-taylor-expansions/3753600#3753600
O $p=2$caso dimensional é um exercício do livro de cálculo de Rogawski. É o exercício 47 na página 885, seção 15.1 (Integração em várias variáveis) na edição 2008 dos primeiros transcendentais.