Genel düzlem hareketi ve serbestçe yüzen sert gövde

Dec 18 2020

Sert, dikdörtgen bir plaka düşünün $l$, Genişlik $w$ ve kalınlık $t$hareketsiz ve uzayda serbestçe yüzen (yerçekimi yok). Plakanın merkezi$O_L$ küresel koordinat çerçevesine göre $O_G$. İlk poz (konum ve yön)$\mathbf{T}$ rijit gövdenin bilindiği varsayılır ve bir $3\times 3$ Rotasyon matrisi ve bir $3\times 1$çeviri vektörü. Ayrıca şekilde gösterildiği gibi,$n$konumu bilinen sert gövde üzerindeki noktalar. Bu noktaların her birine, aynı zamanda bilinen kuvvetler uygulanır. Zaman aralığından sonra$\Delta t$ katı cismin pozu, $\mathbf{T'}$.

Yukarıda verilen bilgiler yeni pozu bulmak için yeterli mi $\mathbf{T'}$? Değilse, hangi bilgiler eksik ve yeni değerini bulmaya nasıl devam edebilirim?$\mathbf{T'}$?.

Herhangi bir yorum ve öneriye açığız :)


DÜZENLE

Basit bir deyişle, bulmak istediğim şey (mümkünse) şuna benzer bir şey söyleyen bir çözümdür: plakayı şu kadar kaydırın ve $x$, $y$ ve $z$ yönünde döndürün ve ardından şu kadar döndürün: $x,y$ ve $z$eksen sırasıyla, böylece plaka,$\mathbf{T'}$.

Kısa zaman aralığında Kuvvetlerin sabit kaldığını lütfen unutmayın. $\Delta t$.

Yanıtlar

1 Eli Jan 10 2021 at 15:54

bu denklemleri çözmelisin

\begin{align*} &m\,\boldsymbol{\ddot{R}}=\boldsymbol{S}(\boldsymbol\varphi)\,\sum_i\,\boldsymbol{F}_i\\ &\boldsymbol\Theta\,\boldsymbol{\dot{\omega}}+\boldsymbol\omega\times\,\left(\boldsymbol\Theta\,\boldsymbol\omega\right) =\sum_i \left(\boldsymbol{r}_i\times \boldsymbol{F}_i\right)\\ &\boldsymbol{\dot\varphi}=\boldsymbol{A}\,\boldsymbol\omega \end{align*} başlangıç ​​koşullarıyla \begin{align*} &\boldsymbol{R}(0)= \boldsymbol{R}_0\\ &\boldsymbol{\dot{R}}(0)= \boldsymbol{0}\\ &\boldsymbol{\varphi}(0)=\boldsymbol{\varphi}_0\\ &\boldsymbol\omega(0)=\boldsymbol{0} \end{align*}

nerede

  • $\boldsymbol{S}$ Vücut sistemi ve atalet sistemi arasındaki dönme matrisi
  • $\boldsymbol{R}$ Kütle merkezi konum vektörü
  • $\boldsymbol{\omega}$ Açısal hız
  • $\boldsymbol{\varphi}=\left[\alpha~,\beta~,\gamma\right]^T$ Euler açıları
  • $\boldsymbol\Theta$ İntertia tensörü \begin{align*} \boldsymbol\Theta= \left[ \begin {array}{ccc} \frac{m}{12}\, \left( {w}^{2}+{t}^{2} \right) &0&0 \\ 0&\frac{m}{12} \left( {l}^{2}+{t}^{2} \right) &0 \\ 0&0&\frac{m}{12} \left( {l}^{2}+{w}^{2} \right) \end {array} \right] \end{align*}

diferansiyel denklemlerin çözümünden kütle merkezinin konumunu elde edersiniz $~\boldsymbol{R}(t)~$ ve vücut rotasyon matrisi $~\boldsymbol{S}(t)$

Düzenle

matris nasıl elde edilir $~\boldsymbol{A}$

Örneğin rotasyon matrisiyle başlarsınız:

\begin{align*} &\boldsymbol S=\left[ \begin {array}{ccc} 1&0&0\\ 0&\cos \left( \alpha \right) &-\sin \left( \alpha \right) \\ 0& \sin \left( \alpha \right) &\cos \left( \alpha \right) \end {array} \right]\, \left[ \begin {array}{ccc} \cos \left( \beta \right) &0&\sin \left( \beta \right) \\ 0&1&0\\ -\sin \left( \beta \right) &0&\cos \left( \beta \right) \end {array} \right]\, \left[ \begin {array}{ccc} \cos \left( \gamma \right) &-\sin \left( \gamma \right) &0\\ \sin \left( \gamma \right) &\cos \left( \gamma \right) &0\\ 0&0&1\end {array} \right]\\\\ &\text{with}\\ &\left[ \begin {array}{ccc} 0&-\omega_{{z}}&\omega_{{y}} \\ \omega_{{z}}&0&-\omega_{{x}}\\ -\omega_{{y}}&\omega_{{x}}&0\end {array} \right] =\boldsymbol{S}^T\,\frac{d}{dt}\,\boldsymbol{S}\\ &\Rightarrow\\ &\begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \\ \end{bmatrix}=\underbrace{\left[ \begin {array}{ccc} \cos \left( \beta \right) \cos \left( { \gamma} \right) &\sin \left( {\gamma} \right) &0\\ - \cos \left( \beta \right) \sin \left( {\gamma} \right) &\cos \left( { \gamma} \right) &0\\ \sin \left( \beta \right) &0&1 \end {array} \right] }_{\boldsymbol{J}_R}\,\begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma}\\ \end{bmatrix}\\ &\boldsymbol{A}=\left[\boldsymbol{J}_R\right]^{-1}= \left[ \begin {array}{ccc} {\frac {\cos \left( \gamma \right) }{\cos \left( \beta \right) }}&-{\frac {\sin \left( \gamma \right) }{\cos \left( \beta \right) }}&0\\ \sin \left( \gamma \right) &\cos \left( \gamma \right) &0\\ -{\frac { \sin \left( \beta \right) \cos \left( \gamma \right) }{\cos \left( \beta \right) }}&{\frac {\sin \left( \beta \right) \sin \left( \gamma \right) }{\cos \left( \beta \right) }}&1\end {array} \right] \end{align*}

Başlangıç ​​koşulları $~\boldsymbol{\varphi}_0=\left[\alpha_0~,\beta_0~,\gamma_0\right]$

ile:

\begin{align*} & \boldsymbol{S}_{t=0}=\left[ \begin {array}{ccc} m_{{1,1}}&m_{{1,2}}&m_{{1,3}} \\ m_{{2,1}}&m_{{2,2}}&m_{{2,3}} \\ m_{{3,1}}&m_{{3,2}}&m_{{3,3}}\end {array} \right]\\\\ &\text{with}~\boldsymbol S= \boldsymbol{S}_{t=0}\\ &\Rightarrow\\ &\tan \left( \alpha_{{0}} \right) =-{\frac {m_{{2,3}}}{m_{{3,3}}}}\\ &\tan \left( \gamma_{{0}} \right) =-{\frac {m_{{1,2}}}{m_{{1,1}}}}\\ &\sin \left( \beta_{{0}} \right) =m_{{1,3}} \end{align*}

2 JohnDarby Jan 06 2021 at 04:50

Kütle merkezinin (CM) öteleme hareketi, ikinci yasayı çözerek verilir: $Md \vec V/dt = \vec F_{ext}$ nerede $M$ toplam kütle $\vec V$ CM'nin hızıdır ve $\vec F_{ext}$net dış kuvvettir. Bu, sert bir gövdede olsun ya da olmasın herhangi bir parçacık sistemi için geçerlidir.

Aşağıdaki dönme hareketi tartışması katı bir gövde varsaymaktadır. Hareket eden kütle merkezi etrafındaki dönme hareketini değerlendirmek karmaşıktır; örneğin, atalet, genel 3B dönüş için bir tensördür. Tipik bir yaklaşım, önce gövdenin temel eksenlerini bulmaktır; eylemsizlik tensöründeki eylemsizlik ürünlerinin sıfır olduğu eksenler. Ana eksenler, CM'de orijinli gövdeye sabitlenmiş gövde eksenlerini oluşturur. Gövde eksenleri gövde ile birlikte dönmektedir. CM'de orijini olan sabit bir uzay eksenleri setine göre hareketi değerlendirmek için (uzay eksenleri sabittir ve dönmez), Euler açıları kullanılabilir. Daha sonra, dönme hareketi Euler açıları kullanılarak bir Lagrangian ile modellenebilir. Bu yaklaşım, Symon, Mechanics ve Goldstein, Classical Mechanics gibi birçok orta / ileri fizik mekaniği testinde tartışılmaktadır. Ayrıntılar ve ana eksenlerin nasıl tanımlanacağı, simetrik bir tepenin hareketi ve torksuz hareket gibi örnekler için böyle bir ders kitabına başvurmanızı öneririm. Genel olarak, özellikle simetrik olmayan cisimler için sayısal yaklaşımlar gereklidir.

Sağladığınız bilgilere ek olarak, plakanın yoğunluğu da değerlendirmek için denklemleri kurmak için gereklidir. $T'$yukarıda özetlenen yaklaşımı kullanarak. Sabit yoğunluk varsayan plakanız için ana eksenlerin simetri sayesinde tanımlanması kolaydır

1 ClaudioSaspinski Jan 06 2021 at 07:51

Bir eylemsizlik çerçevesinin bir noktasından hesaplanan tork (örneğin başlangıç ​​noktası) $O_G$) toplam açısal momentumun zaman türevidir: $$\tau = \frac{d\mathbf L}{dt}$$

Ve belirli bir zamandaki plakanın açısal momentumu:

$$\mathbf L = \int_v \mathbf r_G \times d\mathbf p = \int_v \mathbf r_G \times \frac{d\mathbf r_G}{dt} \rho dv$$

Nerede $\mathbf r_G$ plakanın noktalarının başlangıç ​​noktasından konum vektörüdür $O_G$. Ancak aynı zamanda, plakadaki kuvvetleri ve konumlarını bilerek, tork bilinir:

$$\tau = \sum_{i=1}^n\mathbf r_{Gi} \times \mathbf F_i$$

Bu torku, açısal momentumun intergralinin zaman türevine eşitlediğimizde, bir diferansiyel vektör denklemimiz var. $\mathbf r_G$ ve $\frac{d\mathbf r_G}{dt}$bu, sınır koşullarıyla çözülmelidir $\frac{d\mathbf r_G}{dt} = 0$ ne zaman $t = 0$.

Bu prosedür, gövde sert olmasa bile geçerlidir. Ancak bu ek kısıtlama, vücudun herhangi bir noktası için, başka bir noktaya olan mesafelerin zamanla değişmediği anlamına gelir. Global koordinat çerçevesine paralel eksen seçme$O_G$, ancak kısa bir süre sonra vücudun keyfi bir noktasında orijini olan $\Delta t$ diğer tüm noktaların konumu sonsuz küçük dönme matrisine göre hareket eder $R$.

$$\Delta \mathbf r_b = R\mathbf r_b - \mathbf r_b = (R - I)\mathbf r_b \implies \frac{d \mathbf r_b}{dt} = \Omega \mathbf r_b$$

Nerede $\mathbf r_b$ vücutta seçilen orijine göre konum vektörleridir ve $\Omega$ matristir:

\ begin {Bmatrix} 0 & - \ omega_3 & \ omega_2 \\ \ omega_3 & 0 & - \ omega_1 \\ - \ omega_2 & \ omega_1 & 0 \ end {Bmatrix}

$\omega$koordinat eksenine göre anlık açısal hızlardır. Açısal momentumun integralindeki çapraz çarpım şöyle olur:

$$\mathbf r_b \times \frac{d\mathbf r_b}{dt} = \mathbf r_b \times \Omega \mathbf r_b$$

Çapraz çarpımı genişleterek, herhangi bir zamanda cisimdeki noktaya göre açısal momentum şu şekilde ifade edilebilir: $\mathbf L = (\int_v \rho M dv) \omega$

nerede $M$ kare matristir:

\ begin {Bmatrix} (y ^ 2 + z ^ 2) & -xy & -xz \\ –yx & (z ^ 2 + x ^ 2) & -yz \\ -zx & –zy & (x ^ 2 + y ^ 2) \ end {Bmatrix}

ve $\omega$ sütun matrisidir:

\ başlangıç ​​{Bmatrix} \ omega_1 \\ \ omega_2 \\ \ omega_3 \ end {Bmatrix}

Özellikle, vücuttaki seçilen nokta COM ise, hareketi için ikinci Newton yasasını kullanabiliriz:

$$\sum_{i=1}^n\mathbf F_i = m \frac{d\mathbf v_{COM}}{dt}$$

Ve COM'a göre torku, COM'a göre de açısal momentumun zaman türevine eşitleyin:

$$\tau = \sum_{i=1}^n\mathbf r_{COMi} \times \mathbf F_i = \frac{d(\int_v \rho M dv) \omega}{dt}$$

Tabii ki, yoğunluk sabitse ve tesadüfen kuvvetler gövdeyi 3 ana eylemsizlik ekseninden biri etrafında döndürürse, integral çok fazla basitleştirir.

BurakER Jan 09 2021 at 00:30

Kısa cevapta "Evet" yeterlidir. Herhangi bir sert cisim 6 serbestlik derecesine, 3 öteleme 3 dönüşe sahiptir. Belirli durumlarda; Rotasyon için 3 bağımsız değişken tanımı, rotasyonun tanımlanamadığı tekillik problemlerine yol açar. Bu nedenle, yeni değişken rotasyonun tanıtılmasıyla birlikte, kısıtlama denklemi adı verilen bir denklemle birbirlerine bağımlı oldukları 4 değişkenle açıklanır. Bu nedenle, 4 dönme parametreli tanımlamayla bile, rijit gövde toplamda sadece 6 derece serbestliğe sahiptir. Senin durumunda;

Altı konumsal değişkenin değerini, altı hız değişkeninin değerini ve kuvvetler nedeniyle altı ivme değişkeninin değerini tanımlarsınız. Her şeyin tamamen tanımlandığı yer.

Yani probleminiz "iyi tanımlanmış" problemdir.