Kanıtlamak $\lim_{x\to\infty} \frac{1}{x} = 1$ yanlış

Aug 18 2020

$$\lim_{x\to\infty} \frac{1}{x} = 1$$

Verilen $\epsilon > 0$ $$\left|\frac{1}{x} - 1\right| < \epsilon.$$ Olarak yeniden yaz $$-\epsilon < \frac{1}{x} - 1 < \epsilon$$ $$-\epsilon + 1< \frac{1}{x} < \epsilon + 1$$ Epsilon çok küçükse, her iki tarafta da değer kazanıyoruz $1$, ancak işlev sıfıra yaklaşır, dolayısıyla her iki taraf da yanlıştır. Eğer$\epsilon$ büyük, o zaman sağ tarafta büyük bir pozitif değer alıyoruz, ancak $ n \in (0,1)$işlev de büyüyor. Dolayısıyla sağ taraf başarısız olur. Bu bir ses kanıtı mı? Ve evet ise, matematik sembolleriyle nasıl yeniden yazarım?

Yanıtlar

3 Melody Aug 18 2020 at 13:39

Kabul ederdim, çünkü çok küçük derken neyi kastettiğini biliyorum. Ancak, bu durumda ne demek istediğinizi tam olarak belirtmek en iyisidir. 1/2 kullanırsak ve izin ver$x>2$, sonra $1/x<1/2$. Bu yüzden sahip olamayız$1/x\to1$.

Dürüst olmak gerekirse, bu durumda sağ tarafın önemi yok. Yakınsamanın geçerli olmadığını göstermek için sadece bir eşitsizliği kırmamız gerekiyor. Ama her durumda her zaman için doğrudur$x\geq1$ o $1/x<1+\epsilon$yani doğru eşitsizlik geçerli.

5 fleablood Aug 18 2020 at 14:21

Senin iddian $\frac 1x$ gider $0$kanıtlanması gerekir ve temelde kanıtlanması istenen şey budur; kanıtlamak$\frac 1x$ vermez gidin$1$.

Ve bunu kanıtlarsan$\lim_{x\to \infty} \frac 1x = 0$ (ki bu - addenda'ya bakın) bu yeterli değil çünkü limit notasyonu $\lim_{x\to \infty}f(x) = L$ bir eşitlik gibi görünüyor , aslında herkes için$\epsilon > 0$ orada bir $N$ Böylece $x > N \implies |f(x) - L| < \epsilon$ve orada bilmiyorum edemez iki böyle olmaya$L$s. (ALBunu çok erken kanıtlayabilsek ve kanıtlayalım - bkz.

İşte bir ipucu: $|\frac 1x - 1| =|1-\frac 1x|= |\frac {x-1}x|$.

öyleyse $|\frac 1x - 1|<\epsilon$ sonra $-\epsilon < \frac {x-1}x < \epsilon$. Şimdi olarak$x\to \infty$ Varsayabiliriz $x > 1$ yani $-\epsilon x < 0 < x-1 < x\epsilon$

$x-x\epsilon=x(1-\epsilon) < 1$

Bir seçersek $\epsilon$ Böylece $0<\epsilon < 1$ sahibiz $x < \frac 1{1-\epsilon}$.

Bu bir üst sınır koyar $x$ bununla çelişen $x \to \infty$ yani bu imkansız.

======

Addenda:

İddia: $\lim_{x\to \infty} \frac 1x = 0$.

Pf: Herhangi biri için $\epsilon >0$ İzin Vermek $N =\frac 1{\epsilon}$(olumlu olan). Eğer$x > N$ sonra $|\frac 1x -0| = \frac 1x < \frac 1N =\epsilon$.

İddia: If $\lim_{x\to \infty} f(x) = L$ ve $M \ne L$ sonra $\lim_{x\to \infty} f(x)= M$ doğru değil.

Kanıt: Eğer $L \ne M$ sonra $|L - M| > 0$. İzin Vermek$\epsilon = \frac {|L-M|}2$

Eğer $|f(x) - M| < \epsilon$ ve $|f(x) - L| < \epsilon$ sonra

$|L - M| = |(L - f(x)) + (f(x) - M)| \le |L-f(x)| + |f(x)-M| < \epsilon + \epsilon = |L-M|$

Yani $|L-M| < |L-M|$ki bu imkansız. Yani yok$N$ veya $N'$ böylece eğer $x >N$ ve $x > N'$ (yani $x > \max(N,N')$ sonra $|f(x)-L| < \epsilon$ ve $|f(x) -M| < \epsilon$ imkansız olduğu için.

......

Dolayısıyla, bu yazının metninde yaptığım gibi bunu kanıtlamak istemediyseniz, var olduklarında benzersiz olan sınırlar koyabilir ve kanıtlayabilirsiniz. Ve şu$\lim_{x\to \infty}\frac 1x =0$ ve şu $0 \ne 1$ yani iddia $\lim_{x\to \infty}\frac 1x = 1$ yanlış.

2 user Aug 18 2020 at 13:43

Verilen $\epsilon > 0$ wlog varsaymak $x>1$ ve $\epsilon<1$ sonra

$$\left|\frac{1}{x} - 1\right| < \epsilon \iff1-\frac1x < \epsilon \iff \frac1x>1-\epsilon \iff x<\frac1{1-\epsilon }$$

o zaman eşitsizlik herhangi biri için başarısız olur $x\ge M=\frac1{1-\epsilon }$.

1 CSquared Aug 18 2020 at 15:16

Alternatif bir ispat yöntemi olarak, uygunsuz integrali düşünün $$I=\lim_{x\to\infty}\displaystyle\int_{1}^{x} \frac{1}{t^2}\,dt$$

O zamandan beri biliyoruz $t^2\geq 0$ hepsi için $t\in\mathbb{R}$ve bu durumda, $t\geq 1>0$yani bizde var $1\geq \frac{1}{t^2}>0$, bu integranddaki fonksiyonun aralık üzerinde kesinlikle pozitif olduğunu ima eder $[1,\infty)$, dolayısıyla integral de kesinlikle pozitif olmalıdır, yani, $I>0$. Hesapladıktan sonra şunu görüyoruz$$I=\lim_{x\to\infty} -\frac{1}{t}\bigg|_{t=1}^{t=x} = \lim_{x\to\infty}-\frac{1}{x}+1=\lim_{x\to\infty}-(\frac{1}{x}-1)=-(1-1)=0\not>0$$

Öyleyse, varsayım $\lim_{x\to\infty} \frac{1}{x}=1$ yanlış.

Andrew Aug 18 2020 at 14:43

İfadenin yanlış olduğunu göstermek için bir $\epsilon$ karşılık gelmeyen $x^\star$öyle ki her zaman $x \geq x\star$, $| \frac{1}{x} - 1 | < \epsilon$tutmaz. Varsayalım$L = 1$ ve izin ver $\epsilon = \frac{1}{2}$. Ne zaman düşün$x^\star \geq 1$, sonra \begin{align*} | \frac{1}{x} -1 | \geq \frac{1}{2} \end{align*}

her ne zaman $x \geq 2$. Ne zaman düşün$x^\star <1$, sonra \begin{align*} |\frac{1}{x} -1 | \geq \frac{1}{2} \end{align*} her ne zaman $x \geq 2$.

Bu nedenle, bir $x^\star$ için $\epsilon = \frac{1}{2}$. Bu nedenle, sınırın kesinlikle yanlış olması gerekir$1$.