Kesirli türevlerle ilgili bir soru

Jan 19 2021

Kesirli analiz hakkında pratik olarak hiçbir şey bilmiyorum, bu nedenle aşağıdaki aptalca bir soru ise şimdiden özür dilerim. Zaten math.stackexchange üzerinde denedim.

Doğrusal olan ve aşağıdaki özelliği sağlayan bir kesirli türev kavramı olup olmadığını sormak istedim. $D^u((f)^n) = \alpha D^u(f)f^{(n-1)}$ nerede $\alpha$bir skalerdir. Standart türevler söz konusu olduğunda,$\alpha = n$.

Çok teşekkür ederim.

Yanıtlar

16 TerryTao Jan 19 2021 at 08:15

Temelde, bu denklem için birinci ve sıfırıncı mertebeden operatörlerin ötesinde ilginç çözümler yoktur, sadece biri için belirtilen kısıtlama empoze edilse bile $n=2$.

İlk olarak, hipotezi depolarize edebiliriz$$ D^u(f^2) = \alpha_2 D^u(f) f \quad (1)$$ değiştirerek $f$ ile $f+g, f-g$ keyfi işlevler için $f,g$ ve çıkarma (ve sonra bölme $4$) daha esnek Leibniz tipi kimliği elde etmek için $$ D^u(fg) = \frac{\alpha_2}{2}( D^u(f) g + f D^u(g) ). \quad (2)$$

Şu anda değerine bağlı olarak üç durum var $\alpha_2$:

  1. $\alpha_2 \neq 1,2$. (2) ile uygulanıyor$f=g=1$ sonra şu sonuca varıyoruz $D^u(1)=0$ve sonra (2) 'yi yalnızca $g=1$ anlıyoruz $D^u(f)=0$. Öyleyse önemsiz bir çözüme sahibiz$D^u=0$ bu durumda.
  2. $\alpha_2=2$. Sonra$D^u$bir türetmedir ve tümevarım yoluyla elimizde$D^u(f^n) = n D^u(f) f^{n-1}$tıpkı sıradan türevde olduğu gibi, bizde sadece $\alpha_n=n$ hepsi için $n$ kesirli davranış olmadan.
  3. $\alpha_2=1$. (2) ile uygulanıyor$g=1$ elde ederiz (biraz cebirden sonra) $D^u(f) = mf$ nerede $m := D^u(1)$. Böylece$D^u$ yalnızca bir çarpan operatörüdür ve $D^u(f^n) = D^u(f) f^{n-1}$, Böylece $\alpha_n=1$ hepsi için $n$.

Dolayısıyla, denkleminize normal türetmeler dışında doğrusal çözümler yoktur (örneğin, $D^u(f) = a(x) \frac{d}{dx} f$ herhangi bir pürüzsüz sembol için $a$) ve çarpan operatörleri $D^u(f) = mf$yani birinci dereceden ve sıfırıncı dereceden operatörler.

Öte yandan, kesirli türevler $D^u$ "kesirli zincir kuralına" uyma eğiliminde $$ D^u( F(f) ) = D^u(f) F'(f) + E$$ çeşitli yumuşak fonksiyonlar için $F,f$nerede hata $E$çeşitli Sobolev uzaylarında bu denklemdeki diğer iki terimden daha iyi tahminlere uymaktadır. Özellikle$F(t) = t^n$yapardık $$ D^u(f^n) = n D^u(f) f^{n-1} + E$$ "iyi" bir hata terimi için $E$. Örneğin, alarak$u=n=2$ ile $D$ olağan türev, bizde $$ D^2(f^2) = 2 D^2(f) f + E \quad (3)$$ ile $E$" carré du champ " operatörü$$ E := 2 (Df)^2.$$ Hatanın $E$ tarafından tekdüze olarak kontrol edilir $C^1$ normu $f$ancak (3) 'teki diğer iki terim değildir. Önceki MathOverflow cevabıma şu adresten bakın:https://mathoverflow.net/a/94039/766 bazı referanslar ve daha fazla tartışma için.

6 IosifPinelis Jan 19 2021 at 05:33

Görünüşe göre gerçekten istiyorsun $D^u(f^n)=\alpha f^{n-1} D^u f$, nerede $\alpha$ bir skalerdir.

Bunun doğru olması için hiçbir neden yoktur ve bu gerçekten de genel olarak yanlıştır. Örneğin,$n=2$ve Riemann - Liouville kesirli türevi arasında$f:=\exp$ ile $u=1/2$, $a=0$, ve $x>0$ sahibiz $$f(x)^{n-1}(D^uf)(x)=e^{2 x} \text{erf}\left(\sqrt{x}\right)+\frac{e^x}{\sqrt{\pi } \sqrt{x}},$$ buna karşılık $$(D^u(f^n))(x)=\sqrt{2} e^{2 x} \text{erf}\left(\sqrt{2} \sqrt{x}\right)+\frac{1}{\sqrt{\pi } \sqrt{x}},$$ Böylece $$\frac{D^u(f^n)}{f^{n-1}\,D^uf}$$ herhangi bir sabitten oldukça farklıdır.

Üstelik terim $\text{erf}\left(\sqrt{2} \sqrt{x}\right)$ ifadesinde $(D^u(f^n))(x)$ burada terime karşı $\text{erf}\left(\sqrt{x}\right)$ ifadesinde $f(x)^{n-1}(D^uf)(x)$ Görünüşe göre, başka herhangi bir tür kesirli türevin istediğiniz gibi çalışması pek olası değil.

5 TomCopeland Jan 19 2021 at 05:02

Klasik kesirli integrodürev için geçerli genelleştirilmiş Leibniz formülü şöyledir:

$$ D^{\omega}\; f(x)g(x) = \sum_{n \geq 0} \binom{\omega}{n} [D^{\omega-n}f(x)]D^ng(x)=(D_L+D_R)^{\omega} g(x)f(x),$$

nerede $D_L$ ürünün solundaki işleve göre hareket eder ve $D_R$doğru işlevde. Örneğin, Fugere, Gaboury ve Tremblay tarafından hazırlanan yeni bir dönüşüm formülü aracılığıyla kesirli türevler için Leibniz kuralları ve integral analoglarına bakın .

Bu genelleştirilmiş Leibniz kuralı, Francesco Mainardi ve Gianni Pagnini'nin "Kesirli Hesaplamanın Geliştirilmesinde Salvatore Pincherle'ın Rolü" adlı kitabında açıklanan Pincherle tarafından verilen mantıklı aksiyomları karşılayan kesirli integral türevi için geçerlidir - integral güçlere yükseltilen olağan türevle tatmin olanlar, negatif veya pozitif. Bu operasyonun repsleri bu MSE-Q'da sunulmuştur ve birleşik ( bu MO-Q'ya bakınız ) ve düzenli hipergeometrik fcts'i tanımlamak için kullanılabilir .

Bu temsilcileri $D^{\omega}$Euler gama ve beta fonksiyonlarının tanımlarının kalbinde , çoğu araştırmacının matematik çabalarında sıklıkla kullandığı integraller, integral faktöriyellerin genellemeleri ve integral binom katsayıları ( bu MO-Q'daki / refs'e cevabıma bakın ) - - MO'da ifade edilen bazı görüşlerin tersine. Bu MO-Q'daki yarı türevin bir örneğine bakın (birçok kullanıcı, görünüşe göre Fourier dönüşümü tarafından tanımlanan bazı sözde diferansiyel operatörle karıştırır).