Neden herkes $|X\rangle\in H_1\otimes H_0$ olarak yazılmak $|X\rangle=(X\otimes I_{H_0})|\Omega \rangle$ bazı $X\in\mathcal L(H_0,H_1)$?
In kuantum ağlar için bir teorik çerçeve olarak kanıtlanmış olduğu doğrusal bir harita$\mathcal{M} \in \mathcal{L}(\mathcal{H_0},\mathcal{H_1})$ Choi operatörü dışında CP (tamamen pozitif) $M$yarı kesin pozitiftir. Bu türetmede bir şeyler kafamı karıştırıyor.
İlk olarak, bazı tanım hatırlatmaları.
İzin Vermek $X \in \mathcal{L}(H_0,H_1)$, İzin Vermek $\{|i \rangle \}_i$ ortonormal temeli olmak $H_0$, sahibiz:
$$ | \mathcal{I} \rangle \rangle \equiv \sum_i |ii \rangle$$ $$|X \rangle \rangle \equiv (X \otimes \mathcal{I}) | \mathcal{I} \rangle \rangle$$
Choi operatörü şu şekilde tanımlanır:
$$ M = \mathcal{M} \otimes \mathcal{I}_{H_0} | \mathcal{I} \rangle \rangle \langle \langle \mathcal{I} |$$
İspatında varsayar $M \geq 0$ amaç bunun ima ettiğini göstermektir $\mathcal{M}$ CP'dir.
$M$yarı kesin pozitiftir, bu da pozitif özdeğerleri olan münzevi olduğunu gösterir. Böylelikle köşegenleştirilebilir. İle$\lambda_i \geq 0$, sahibiz:
$$ M = \sum_i \lambda_i |u_i \rangle \langle u_i |=\sum_i | K_i \rangle \langle K_i |$$
İle $|K_i \rangle = \sqrt{\lambda_i} |u_i \rangle$
Ama "otomatik olarak" bunu düşünüyor gibi görünüyor $|K_i \rangle = |K_i \rangle \rangle$. Ben anlamıyorum Neden mecburen sahip olalım$|K_i \rangle = (K_i \otimes \mathcal{I}) | \mathcal{I} \rangle \rangle$. Bu çok özel bir durum. Devlet, neden maksimum düzeyde karışık bir devlet üzerinde hareket eden yerel bir işlem olarak yazılabilir?
Herhangi bir kuantum halinin şu şekilde yazılabileceği süper belirsiz bir hafızam var. $(K \otimes \mathbb{I}) | \mathcal{I} \rangle \rangle$. Başka bir deyişle, her zaman doğrusal bir işlem vardır$K$ (elbette zorunlu olarak üniter değildir) öyle ki herhangi bir vektör $H_1 \otimes H_0$ olarak yazılabilir $K \otimes \mathcal{I} | \mathcal{I} \rangle \rangle$Sanırım sorunu çözecektir. Ama bunun kaynağını bulamıyorum ve tamamen yanılıyor olabilirim.
Sonunda neden yazabiliriz: $|K_i \rangle = |K_i \rangle \rangle$. Bunun bir kanıtı istiyorum (ve az önce bahsettiğim mülk tutarsa, onu ifade eden bir referansa bağlantı veya yanıta yanıta bunun bir kanıtı istiyorum)
Yanıtlar
İzin Vermek $K$ vektör ol $$ |K\rangle=\sum_{ij}K_{ij}|i,j\rangle. $$ Bunu yeniden yazabiliriz $$ |K\rangle=\left(\left(\sum_{ij}K_{ij}|i\rangle\langle j|\right)|j\rangle\right)\otimes|j\rangle, $$ ve bu sadece aynı $$ |K\rangle=K\otimes 1\sum_j|j,j\rangle=|K\rangle\rangle $$ matrisi tanımlarsak $K$ olmak $K=\sum_{ij}K_{ij}|i\rangle\langle j|$.
Choi matrisini şu şekilde tanımladınız: $M = \rho_{\mathrm{Choi}} = \left(\mathcal{M}\otimes I\right)(|\mathcal{I}\rangle\rangle\langle\langle\mathcal{I}||)$. En fazla karışık durumu şöyle yazacağım$|\mathcal{\Omega}\rangle$ çünkü benim için daha iyi okunabilir ve ben buna daha alışkınım.
Zaten belirttin ki $M$ pozitif-yarı-kesin olmak, gerçek değerli bir spektral ayrıştırma yapabileceğimiz anlamına gelir:
$$ M = \sum_{i}\lambda_{i}|u_{i}\rangle\langle u_{i}| = \sum_{i}\sqrt{\lambda_{i}}|u_{i}\rangle\langle u_{i}| \sqrt{\lambda_{i}}. $$ Bunları ayrıştırabiliriz $\sqrt{\lambda_{i}}|u_{i}\rangle$Hilbert uzaylarının her iki kopyası için bir temelin tensör çarpımına dönüşür: $$ \sqrt{\lambda_{i}}|u_{i}\rangle = \sum_{l}|a^{i}_{l}\rangle \otimes |b^{i}_{l}\rangle, $$
bu da şunu yazabileceğimiz anlamına gelir: \ begin {equation} \ begin {split} M = & \ sum_ {i} \ lambda_ {i} | u_ {i} \ rangle \ langle u_ {i} | = \ toplam_ {i} \ toplam_ {l} \ toplam_ {m} | a ^ {i} _ {l} \ rangle \ otimes | b ^ {i} _ {l} \ rangle \ langle a ^ {i} _ {m} | \ otimes \ langle b ^ {i} _ {m} | \\ = & \ sum_ {i, l, m} | a ^ {i} _ {l} \ rangle \ langle a ^ {i} _ {m} | \ otimes | b ^ {i} _ {l} \ rangle \ langle b ^ {i} _ {m} |. \ end {split} \ end {equation}
Sizin de farkında olabileceğiniz gibi, haritanın 'çıktısını' yazabiliriz $\mathcal{M}$ girişte $\rho_{\mathrm{in}}$, böylece $\rho_{\mathrm{out}} = \mathcal{M}\left(\rho_{\mathrm{in}}\right)$Choi matrisi açısından $M$:
$$ \mathcal{M}\left(\rho_{\mathrm{in}}\right) = d \mathrm{tr}_{2}\big[M\left(I \otimes \rho_{\mathrm{in}}^{T}\right)\big], $$ iz, ikinci alt sistem üzerindeki kısmi izdir ve $T$ üst simge, devrik anlamına gelir.
Şimdi, yukarıdaki ayrıştırmamızı $M$: \ başlangıç {denklem} \ başla {bölme} \ mathcal {M} \ left (\ rho _ {\ mathrm {in}} \ right) & = d \ mathrm {tr} _ {2} \ big [M \ left ( I \ otimes \ rho _ {\ mathrm {in}} ^ {T} \ right) \ big] \\ & = d \ mathrm {tr} _ {2} \ big [\ sum_ {i, l, m} | a ^ {i} _ {l} \ rangle \ langle a ^ {i} _ {m} | \ otimes | b ^ {i} _ {l} \ rangle \ langle b ^ {i} _ {m} | \ left (I \ otimes \ rho _ {\ mathrm {in}} ^ {T} \ right) \ big] \\ & = d \ sum_ {i, l, m} \ mathrm {tr} _ {2} \ büyük [| a ^ {i} _ {l} \ rangle \ langle a ^ {i} _ {m} | \ otimes | b ^ {i} _ {l} \ rangle \ langle b ^ {i} _ {m} | \ rho _ {\ mathrm {in}} ^ {T} \ big] \\ & = d \ sum_ {i, l, m} | a ^ {i} _ {l} \ rangle \ langle a ^ {i} _ {m} | \ langle b ^ {i} _ {m} | \ rho _ {\ mathrm {in}} ^ {T} | b ^ {i} _ {l} \ rangle \\ & = d \ sum_ {i, l, m} | a ^ {i} _ {l} \ rangle \ langle a ^ {i} _ {m} | \ langle b ^ {* i} _ {l} | \ rho _ {\ mathrm {in}} | b ^ {* i} _ {m} \ rangle \\ & = d \ sum_ {i, l, m} | a ^ {i} _ {l} \ rangle \ langle b ^ {* i} _ {l} | \ rho _ {\ mathrm {in}} | b ^ {* i} _ {m} \ rangle \ langle a ^ {i} _ {m} | \\ & = \ sum_ {i} A_ {i} \ rho _ {\ mathrm {in}} A_ {i} ^ {\ dagger}, \ end {split} \ end {equation} ile$A_{i} = \sum_{l}\sqrt{d} |a^{i}_{l}\rangle \langle b^{*i}_{l}|$. Bu sadece Kraus ayrışması, ki bu yeterli$\mathcal{M}$ CP olmak.
İzin Vermek $\newcommand{\kett}[1]{\lvert #1\rangle\!\rangle}\newcommand{\ket}[1]{\lvert#1\rangle}\ket m\equiv \sum_k \ket{k,k}$ (normalize edilmemiş) maksimum dolaşık durumu belirtir.
İlişki $\kett X=(X\otimes I)\ket m$basit bir dizin hokkabazlığı anlamına gelir. Bununla, aynı nesneyi, yani aynı sayı kümesini düşündüğünüzü , ancak onu farklı şekillerde yorumladığınızı (bir vektör yerine bir operatör olarak) kastediyorum .
Bunu görmek için izin ver $X\in\mathcal L(H_0,H_1)$ matris elemanlarını (bazı seçimlerde) olarak yazdığımız operatörünüz olun $X_{ij}$. Anlayabileceğinizi unutmayın$X_{ij}$ operatör olarak ("dizini gönderme $j$ dizine $i$") veya bir vektör olarak$H_0\otimes H_1$. Daha resmi olarak, eğer yazarsak$\kett X$ "vektör yorumu" $X$, sahibiz $$\langle i,j\kett X = X_{ij} =\langle i|X|j\rangle = \langle i,j|(X\otimes I)\ket m,$$ nerede kullandık $\langle i,j|X\otimes I|k,\ell\rangle = X_{ik}\delta_{j\ell},$ ve böylece $\kett X=(X\otimes I)\ket m.$ Bu aynı zamanda genellikle şöyle yazılır $\kett X=\operatorname{vec}(X)$, ile $\operatorname{vec}:\mathrm{Lin}(\mathcal X,\mathcal Y)\to\mathcal Y\otimes\mathcal X$ "vektörleştirme" işlemi.