Tensörünün sol eşleniği olan tek biçimli kategoriler
Monoidal kategoriler için bir isim var mı $(\mathscr V, \otimes, I)$ öyle ki $\otimes$ sol ek noktası var $(\ell, r) : \mathscr V \to \mathscr V^2$? Herhangi bir yerde çalışıldı mı? Bazı ilginç örnekler nelerdir?
Birkaç açıklama: ne zaman $I : 1 \to \mathscr V$ bir sol ek noktası vardır, o zaman $\mathscr V$semicartesian, yani birim terminaldir. Ne zaman$\otimes$ ayrıca köşegen olan bir sol ek noktasına sahiptir $\Delta : \mathscr V \to \mathscr V^2$, sonra $\mathscr V$ ikili çarpımlara sahiptir.
Yapıyı daha açık hale getirmek için buradaki tanımı açacağım. İzin Vermek$(\mathscr V, \otimes, I)$ tek biçimli bir kategori olun. $\otimes$ Aşağıdakilere sahipsek bir sol ek noktası vardır.
- endofunctors $\ell : \mathscr V \to \mathscr V$ ve $r : \mathscr V \to \mathscr V$;
- her morfizm çifti için $f : \ell(X) \to Y$ ve $g : r(X) \to Z$, bir morfizm $\{f, g\} : X \to Y \otimes Z$;
- her morfizm için $h : X \to Y \otimes Z$, morfizmler $h_\ell : \ell(X) \to Y$ ve $h_r : r(X) \to Z$,
öyle ki herkes için $x : X' \to X$, $y : Y \to Y'$ ve $z : Z \to Z'$, sahibiz $$y \otimes z \circ \{ f, g \} \circ x = \{ y \circ f \circ \ell(x), z \circ g \circ r(x) \}$$ $$\{ h_\ell, h_r \} = h$$ $$\{ f, g \}_\ell = f$$ $$\{ f, g \}_r = g$$
Yanıtlar
Sadece temizlemek için $\epsilon$Qiaochu'nun cevabından sonra kalan alan - ekstra hipotezlerden kurtulabiliriz. yazacağım$I$ monoidal birim için ve $1$ terminal nesnesi için.
Varsayalım ki $(\ell,r) \dashv \otimes$. Sonra doğal izomorfizmler$A \cong I \otimes A \cong A \otimes I$ ek olarak haritalara yol açar $\ell A \to I$ ve $r A \to I$, doğal olarak $A$. Ayrıca bir birim haritamız var$A \to (\ell A) \otimes (r A)$, doğal olarak $A$. Tensorlama ve besteleme, bir harita alıyoruz$A \to (\ell A) \otimes (r A) \to I \otimes I \cong I$, doğal olarak $A$. Yani, bir kokonumuz var (tepe noktalı$I$) kimlik işlevinde $V$. Bunu idempotent tamamlamada izler$\tilde V$ nın-nin $V$, bir uçbirim nesnesi var (geri çekilme olmalıdır $I$).
Şimdi, idempotent tamamlama $\tilde V$ yine tek biçimli bir yapıya sahiptir $\tilde \otimes$ sol ek nokta ile $(\tilde \ell, \tilde r)$. Yani Qiaochu'nun Eckmann-Hilton argümanının ilk kısmı,$\tilde V$: $I = I \otimes I = (I \times 1) \otimes (1 \times I) = (I \otimes 1) \times (1 \otimes I) = 1 \times 1 = 1$ (üçüncü ifadede ürünler önemsiz bir şekilde bulunur ve dördüncü ifadede ürün vardır çünkü $\otimes$ürünleri korur). Yani, sahip olmalıyız$I_{\tilde V} = 1_{\tilde V}$. Fakat$I_{\tilde V}$ görüntüsü $I_V$ içinde $\tilde V$ve idempotent tamamlamaya dahil olma, uç nesneleri yansıtır. Bu nedenle$V$ bir terminal nesnesine sahiptir ve $1_V = I_V$.
Ardından, yukarıdaki yorumlarda görüldüğü gibi, Qiaochu'nun Eckmann-Hilton argümanının ikinci kısmı, $V$: $A \otimes B = (A \times 1) \otimes (1 \times B) = (A \otimes 1) \times (1 \otimes B) = A \times B$ (ikinci ifadede ürünler önemsiz bir şekilde mevcuttur ve üçüncü ifadede ürün vardır çünkü $\otimes$ürünleri korur). Yani, ikili ürünler var$V$ ve katılıyorum $\otimes$. Aslında, kimlik functor bir oplax monoidal functor'dur.$(V,\otimes)$ -e $(V,\times)$, argümanın gösterdiği aslında güçlü tek biçimli. Böylece$(V,\otimes) \simeq (V,\times)$ monoidal kategoriler olarak.
Eğer $\otimes : V \times V \to V$ sol bir ek noktasına sahiptir ve $V$ sonlu ürünlere sahipse $\otimes$ onları doğal haritanın
$$(X \times Y) \otimes (Z \times W) \to (X \otimes Z) \times (Y \otimes W)$$
bir izomorfizmdir. Eckmann-Hilton argümanının tek biçimli kategorik bir versiyonuna göre, bana öyle geliyor ki, bu şu anlama geliyor:$\otimes$üründür. Açıkça, izin verirsek$1_{\times}$ terminal nesnesini belirtir ve $1_{\otimes}$ monoidal birimi gösterir, sonra izomorfizm alırız
$$1_{\otimes} \cong 1_{\otimes} \otimes 1_{\otimes} \cong (1_{\otimes} \times 1_{\times}) \otimes (1_{\times} \times 1_{\otimes}) \cong (1_{\otimes} \otimes 1_{\times}) \times (1_{\times} \otimes 1_{\otimes}) \cong 1_{\times} \times 1_{\times} \cong 1_{\times}$$
yani $1_{\otimes} \cong 1_{\times}$(ve eğer varsa bu izomorfizm benzersizdir, bu yüzden doğallık hakkında çok fazla endişelenmemize gerek bile yoktur). Şimdi çirkin abonelikleri çıkarabilir ve sadece$1$. Bu doğal bir izomorfizm verir
$$X \otimes Y \cong (X \times 1) \otimes (1 \times Y) \cong (X \otimes 1) \times (1 \otimes Y) \cong X \times Y$$
herhangi $X, Y$. Aslında bu argümanın,$\otimes$ ürünün ilişkilendiricisi ve denetleyicisi ile eşleşir, ancak bu argümanın daha ayrıntılı bir versiyonunun bunu yaptığını tahmin ediyorum.
Bunun mümkün olup olmadığını bilmiyorum $V$sonlu ürünleri yoktur. (Daha önce burada Day evrişimini içeren bir tartışma vardı, ancak Tim yorumlarda boşluklara işaret etti.)