Üniform olmayan grevden tenor ızgarasına karşı FX Vol Yüzeyinin enterpolasyonu
TL; DR
Fiyatlandırılacak yerel bir vol modeli oluşturmak için piyasa FX opsiyon fiyatlarına bir vol yüzeyi uydurmaya çalışıyorum. Tipik olarak hoş bir dikdörtgen grev ve tenör ızgarasına sahip listelenen seçeneklerin aksine, FX seçenekleri OTC ticareti yapma eğilimindedir ve mevcut kotalar tek tip bir ızgara sağlamaz.
Tek tip olmayan ızgaralarda 2B enterpolasyon için mantıklı bir yaklaşım nedir? Sahip olduğum fikirler şunlardı:
- Noktaların daha ince bir kare ızgarası oluşturun
scipy.interpolate.griddata
ve bunlar için değerleri hesaplayın (örneğin aşağıda gösterilenleri kullanarak ) ve bunun için hacim yüzeyini oluşturun (bu israf gibi görünse de) - Daha sonra standart bir 2D ızgara interpolatörü kullanarak onları eşit bir şekilde yaymak için seçenek ihtarlarına bir miktar dönüşüm uygulayın (önceki tenörleri sonraki olanlardan daha fazla uzatın)
Sonunda bir model oluşturmak için istiyorum QuantLib
kullanılarak ql.BlackVarianceSurface
, şu anda vol dikdörtgen bir ızgara gerektirir.
İnsanların 2D enterpolasyon tehlikeleri ve ekstrapolasyon sorunları da dahil olmak üzere hangi yaklaşımları benimsediğini duymak isterim.
Sorunla ilgili daha fazla ayrıntı
İşte piyasa tarafından kote edilen bir FX vol yüzey örneği:
Bu (strike, tenor, vol) üçe dönüştürüldüğünde grevler şuna benzer:
Bu bize tek tip olmayan bir hacim ızgarası verir, 2 boyutlu bir yüzeyde şuna benzerler (tte ve kök tte'de):
Kullanarak scipy.interpolate.griddatave iki enterpolasyonlu bir kare ızgaraya çevirin:
Yanıtlar
Birkaç hafta önce Quantlib python'da bu satırlarda bir şeyler denedim. Yaklaşımınıza kıyasla biraz daha basit olduğunu düşünüyorum:
- FX vols (10D koyma, 25D koyma, ATM, 25D çağrı, 10D çağrı) için standart bir delta fiyat teklifi ile başlayın
- İhtar setini elde etmek için opsiyonların parasını hesaplayın (bu, her opsiyon vadesinin orijinal kaynağın parasal fiyat tekliflerine karşılık gelen benzersiz ihtarlara sahip olacağından bu büyük bir grev seti olacaktır)
- Her olgunluk için tam grev seti için eksik ciltleri hesaplayın - Bunu Quantlib'deki BlackVarianceSurface işlevini kullanarak yaptım. Böylece tam bir vade / grev tablosu elde ettim
- Sonunda bu verileri aldım ve bir Heston kalibrasyonunu denedim ve çıktıyı bir HestonBlackVolSurface işlevine taktım
Heston'un ima ettiği ciltler giriş kaynağı ciltlerimi doğru bir şekilde yeniden üretmediğinden sonuçlar harika değildi, ancak bu muhtemelen zayıf kalibrasyonum ve kullandığım sahte giriş kaynağı değerleri ile daha fazla ilgisi var. Yine de değerli bir egzersizdi.
Yardımcı olması durumunda Quantlib kodum aşağıdadır:
def deltavolquotes(ccypair,fxcurve):
from market import curveinfo
sheetname = ccypair + '_fx_volcurve'
df = pd.read_excel('~/iCloud/python_stuff/finance/marketdata.xlsx', sheet_name=sheetname)
curveinfo = curveinfo(ccypair, 'fxvols')
calendar = curveinfo.loc['calendar', 'fxvols']
daycount = curveinfo.loc['curve_daycount', 'fxvols']
settlement = curveinfo.loc['curve_sett', 'fxvols']
flat_vol = ql.SimpleQuote(curveinfo.loc['flat_vol', 'fxvols'])
flat_vol_shift = ql.SimpleQuote(0)
used_flat_vol = ql.CompositeQuote(ql.QuoteHandle(flat_vol_shift), ql.QuoteHandle(flat_vol), f)
vol_shift = ql.SimpleQuote(0)
calculation_date = fxcurve.referenceDate()
settdate = calendar.advance(calculation_date, settlement, ql.Days)
date_periods = df[ccypair].tolist()
atm = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['ATM'].tolist()]
C25 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['25C'].tolist()]
P25 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['25P'].tolist()]
C10 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['10C'].tolist()]
P10 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['10P'].tolist()]
dates = [calendar.advance(settdate, ql.Period(i)) for i in date_periods]
yearfracs = [daycount.yearFraction(settdate, i) for i in dates]
dvq_C25 = [ql.DeltaVolQuote(0.25, ql.QuoteHandle(i), j, 0) for i, j in zip(C25, yearfracs)]
dvq_P25 = [ql.DeltaVolQuote(-0.25, ql.QuoteHandle(i), j, 0) for i, j in zip(P25, yearfracs)]
dvq_C10 = [ql.DeltaVolQuote(0.10, ql.QuoteHandle(i), j, 0) for i, j in zip(C10, yearfracs)]
dvq_P10 = [ql.DeltaVolQuote(-0.10, ql.QuoteHandle(i), j, 0) for i, j in zip(P10, yearfracs)]
info=[settdate,calendar,daycount,df,used_flat_vol,vol_shift,flat_vol_shift,date_periods]
return atm,dvq_C25,dvq_P25,dvq_C10,dvq_P10,dates,yearfracs,info
def fxvolsurface(ccypair,FX,fxcurve,curve):
atm,dvq_C25,dvq_P25,dvq_C10,dvq_P10,dates,yearfracs,info = deltavolquotes(ccypair,fxcurve)
settdate = info[0]
calendar=info[1]
daycount=info[2]
df=info[3]
used_flat_vol=info[4]
vol_shift=info[5]
flat_vol_shift=info[6]
date_periods=info[7]
blackdc_C25=[ql.BlackDeltaCalculator(ql.Option.Call,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_C25,yearfracs)]
blackdc_C10=[ql.BlackDeltaCalculator(ql.Option.Call,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_C10,yearfracs)]
blackdc_P25=[ql.BlackDeltaCalculator(ql.Option.Put,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_P25,yearfracs)]
blackdc_P10=[ql.BlackDeltaCalculator(ql.Option.Put,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_P10,yearfracs)]
C25_strikes=[i.strikeFromDelta(0.25) for i in blackdc_C25]
C10_strikes=[i.strikeFromDelta(0.10) for i in blackdc_C10]
P25_strikes=[i.strikeFromDelta(-0.25) for i in blackdc_P25]
P10_strikes=[i.strikeFromDelta(-0.10) for i in blackdc_P10]
ATM_strikes=[i.atmStrike(j.AtmFwd) for i,j in zip(blackdc_C25,dvq_C25)]
strikeset=ATM_strikes+C25_strikes+C10_strikes+P25_strikes+P10_strikes
strikeset.sort()
hestonstrikes=[P10_strikes,P25_strikes,ATM_strikes,C25_strikes,C10_strikes]
hestonvoldata=[df['10P'].tolist(),df['25P'].tolist(),df['ATM'].tolist(),df['25C'].tolist(),df['10C'].tolist()]
volmatrix=[]
for i in range(0,len(atm)):
volsurface=ql.BlackVolTermStructureHandle(ql.BlackVarianceSurface(settdate,calendar,[dates[i]],
[P10_strikes[i],P25_strikes[i],ATM_strikes[i],C25_strikes[i],C10_strikes[i]],
[[dvq_P10[i].value()],[dvq_P25[i].value()],[atm[i].value()],[dvq_C25[i].value()],
[dvq_C10[i].value()]],
daycount))
volmatrix.append([volsurface.blackVol(dates[i],j,True) for j in strikeset])
volarray=np.array(volmatrix).transpose()
matrix = []
for i in range(0, volarray.shape[0]):
matrix.append(volarray[i].tolist())
fxvolsurface=ql.BlackVolTermStructureHandle(
ql.BlackVarianceSurface(settdate,calendar,dates,strikeset,matrix,daycount))
'''
process = ql.HestonProcess(fxcurve, curve, ql.QuoteHandle(FX), 0.01, 0.5, 0.01, 0.1, 0)
model = ql.HestonModel(process)
engine = ql.AnalyticHestonEngine(model)
print(model.params())
hmh = []
for i in range(0,len(date_periods)):
for j in range(0,len(hestonstrikes)):
helper=ql.HestonModelHelper(ql.Period(date_periods[i]), calendar, FX.value(),hestonstrikes[j][i],
ql.QuoteHandle(ql.SimpleQuote(hestonvoldata[j][i])),fxcurve,curve)
helper.setPricingEngine(engine)
hmh.append(helper)
lm = ql.LevenbergMarquardt()
model.calibrate(hmh, lm,ql.EndCriteria(500, 10, 1.0e-8, 1.0e-8, 1.0e-8))
vs = ql.BlackVolTermStructureHandle(ql.HestonBlackVolSurface(ql.HestonModelHandle(model)))
vs.enableExtrapolation()'''
flatfxvolsurface = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(settdate, calendar, ql.QuoteHandle(used_flat_vol), daycount))
fxvoldata=pd.DataFrame({'10P strike':P10_strikes,'25P strike':P25_strikes,'ATM strike':ATM_strikes,
'25C strike':C25_strikes,'10C strike':C10_strikes,'10P vol':df['10P'].tolist(),
'25P vol':df['25P'].tolist(),'ATM vol':df['ATM'].tolist(),
'25C vol':df['25C'].tolist(),'10C vol':df['10C'].tolist()})
fxvoldata.index=date_periods
fxvolsdf=pd.DataFrame({'fxvolsurface':[fxvolsurface,flatfxvolsurface],'fxvoldata':[fxvoldata,None]})
fxvolsdf.index=['surface','flat']
fxvolshiftsdf=pd.DataFrame({'fxvolshifts':[vol_shift,flat_vol_shift]})
fxvolshiftsdf.index=['surface','flat']
return fxvolshiftsdf,fxvolsdf
Sonunda, her tenora bir SABR gülüşünün yerleştirilmesinin ( bu cevabın bir sonucunu ödünç alarak ), düzgün ve iyi işlenmiş bir varyans yüzeyi oluşturmak için yeterince iyi davranan yerel bir vol yüzey oluşturmak için yeterli olduğunu buldum . Ayrıca ona bir Heston modeli de yerleştirdim ve iki yüzey oldukça benzer görünüyor. İşte son kod ve oluşturulan uyumlar (bu grafikleri oluşturmak için en alttaki uzun pasaj gereklidir ve ayrıca gerekli ham verileri içerir)
İlk olarak, her tenor üzerinde döngü yapmak ve bir SABR gülüşüne uymak:
# This is the 'SABR-solution'... fit a SABR smile to each tenor, and let the vol surface interpolate
# between them. Below, we're using the python minimizer to do a fit to the provided smiles
calibrated_params = {}
# params are sigma_0, beta, vol_vol, rho
params = [0.4, 0.6, 0.1, 0.2]
fig, i = plt.figure(figsize=(6, 42)), 1
for tte, group in full_df.groupby('tte'):
fwd = group.iloc[0]['fwd']
expiry = group.iloc[0]['expiry']
strikes = group.sort_values('strike')['strike'].values
vols = group.sort_values('strike')['vol'].values
def f(params):
params[0] = max(params[0], 1e-8) # Avoid alpha going negative
params[1] = max(params[1], 1e-8) # Avoid beta going negative
params[2] = max(params[2], 1e-8) # Avoid nu going negative
params[3] = max(params[3], -0.999) # Avoid nu going negative
params[3] = min(params[3], 0.999) # Avoid nu going negative
calc_vols = np.array([
ql.sabrVolatility(strike, fwd, tte, *params)
for strike in strikes
])
error = ((calc_vols - np.array(vols))**2 ).mean() **.5
return error
cons = (
{'type': 'ineq', 'fun': lambda x: x[0]},
{'type': 'ineq', 'fun': lambda x: 0.99 - x[1]},
{'type': 'ineq', 'fun': lambda x: x[1]},
{'type': 'ineq', 'fun': lambda x: x[2]},
{'type': 'ineq', 'fun': lambda x: 1. - x[3]**2}
)
result = optimize.minimize(f, params, constraints=cons, options={'eps': 1e-5})
new_params = result['x']
calibrated_params[tte] = {'v0': new_params[0], 'beta': new_params[1], 'alpha': new_params[2], 'rho': new_params[3], 'fwd': fwd}
newVols = [ql.sabrVolatility(strike, fwd, tte, *new_params) for strike in strikes]
# Start next round of optimisation with this round's parameters, they're probably quite close!
params = new_params
plt.subplot(len(tenors), 1, i)
i = i+1
plt.plot(strikes, vols, marker='o', linestyle='none', label='market {}'.format(expiry))
plt.plot(strikes, newVols, label='SABR {0:1.2f}'.format(tte))
plt.title("Smile {0:1.3f}".format(tte))
plt.grid()
plt.legend()
plt.show()
bunun gibi bir dizi olay örgüsü oluşturur ve bunların hepsi çoğunlukla oldukça iyi uymaktadır:
Bu, her tenorda SABR parametreleri oluşturur (bu örnekte, yurt dışı ve yurt içi indirim eğrilerini düz olacak şekilde ayarladım):
Sonra bir yerel vol modelini ve bir Heston vol modelini kalibre ettim, aslında ikisi de birbirine oldukça yakın görünüyor:
# Fit a local vol surface to a strike-tenor grid extrapolated according to SABR
strikes = np.linspace(1.0, 1.5, 21)
expiration_dates = [calc_date + ql.Period(int(365 * x), ql.Days) for x in params.index]
implied_vols = []
for tte, row in params.iterrows():
fwd, v0, beta, alpha, rho = row['fwd'], row['v0'], row['beta'], row['alpha'], row['rho']
vols = [ql.sabrVolatility(strike, fwd, tte, v0, beta, alpha, rho) for strike in strikes]
implied_vols.append(vols)
implied_vols = ql.Matrix(np.matrix(implied_vols).transpose().tolist())
local_vol_surface = ql.BlackVarianceSurface(calc_date, calendar, expiration_dates, strikes, implied_vols, day_count)
# Fit a Heston model to the data as well
v0 = 0.005; kappa = 0.01; theta = 0.0064; rho = 0.0; sigma = 0.01
heston_process = ql.HestonProcess(dom_dcf_curve, for_dcf_curve, ql.QuoteHandle(ql.SimpleQuote(spot)), v0, kappa, theta, sigma, rho)
heston_model = ql.HestonModel(heston_process)
heston_engine = ql.AnalyticHestonEngine(heston_model)
# Set up Heston 'helpers' to calibrate to
heston_helpers = []
for idx, row in full_df.iterrows():
vol = row['vol']
strike = row['strike']
tenor = ql.Period(row['expiry'])
helper = ql.HestonModelHelper(tenor, calendar, spot, strike, ql.QuoteHandle(ql.SimpleQuote(vol)), dom_dcf_curve, for_dcf_curve)
helper.setPricingEngine(heston_engine)
heston_helpers.append(helper)
lm = ql.LevenbergMarquardt(1e-8, 1e-8, 1e-8)
heston_model.calibrate(heston_helpers, lm, ql.EndCriteria(5000, 100, 1.0e-8, 1.0e-8, 1.0e-8))
theta, kappa, sigma, rho, v0 = heston_model.params()
feller = 2 * kappa * theta - sigma ** 2
print(f"theta = {theta:.4f}, kappa = {kappa:.4f}, sigma = {sigma:.4f}, rho = {rho:.4f}, v0 = {v0:.4f}, spot = {spot:.4f}, feller = {feller:.4f}")
heston_handle = ql.HestonModelHandle(heston_model)
heston_vol_surface = ql.HestonBlackVolSurface(heston_handle)
# Plot the two vol surfaces ...
plot_vol_surface([local_vol_surface, heston_vol_surface], plot_years=np.arange(0.1, 1.0, 0.1), plot_strikes=np.linspace(1.05, 1.45, 20))
Yerel vol modelinin vanilyaları doğru şekilde fiyatlandırmasını, ancak alakasız vol dinamikleri vermesini beklerken, Heston'ın daha iyi vol dinamikleri vermesini ancak vanilyaları o kadar iyi fiyatlandırmamasını bekleriz, ancak bir kaldıraç fonksiyonunu kalibre ederek ve Heston stokastik yerel vol modeli kullanarak elde edebiliriz. her iki dünyanın en iyisi - ve bu aynı zamanda oluşturduğumuz yerel vol yüzeyin iyi davrandığına dair iyi bir test
# Calculate the Dupire instantaneous vol surface
local_vol_surface.setInterpolation('bicubic')
local_vol_handle = ql.BlackVolTermStructureHandle(local_vol_surface)
local_vol = ql.LocalVolSurface(local_vol_handle, dom_dcf_curve, for_dcf_curve, ql.QuoteHandle(ql.SimpleQuote(spot)))
# Calibrating a leverage function
end_date = ql.Date(21, 9, 2021)
generator_factory = ql.MTBrownianGeneratorFactory(43)
timeStepsPerYear = 182
nBins = 101
calibrationPaths = 2**19
stoch_local_mc_model = ql.HestonSLVMCModel(local_vol, heston_model, generator_factory, end_date, timeStepsPerYear, nBins, calibrationPaths)
leverage_functon = stoch_local_mc_model.leverageFunction()
plot_vol_surface(leverage_functon, funct='localVol', plot_years=np.arange(0.5, 0.98, 0.1), plot_strikes=np.linspace(1.05, 1.35, 20))
Bu, her yerde 1'e yakın olan hoş görünümlü bir kaldıraç işlevi üretir (ham Heston uyumunun zaten oldukça iyi olduğunu gösterir)
Yukarıdaki görüntüleri oluşturmak için standart kod (FX delta-to-strike dönüşümü dahil):
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import norm
from scipy import optimize, stats
import QuantLib as ql
calc_date = ql.Date(1, 9, 2020)
def plot_vol_surface(vol_surface, plot_years=np.arange(0.1, 3, 0.1), plot_strikes=np.arange(70, 130, 1), funct='blackVol'):
if type(vol_surface) != list:
surfaces = [vol_surface]
else:
surfaces = vol_surface
fig = plt.figure(figsize=(10, 6))
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(plot_strikes, plot_years)
Z_array, Z_min, Z_max = [], 100, 0
for surface in surfaces:
method_to_call = getattr(surface, funct)
Z = np.array([method_to_call(float(y), float(x))
for xr, yr in zip(X, Y)
for x, y in zip(xr, yr)]
).reshape(len(X), len(X[0]))
Z_array.append(Z)
Z_min, Z_max = min(Z_min, Z.min()), max(Z_max, Z.max())
# In case of multiple surfaces, need to find universal max and min first for colourmap
for Z in Z_array:
N = (Z - Z_min) / (Z_max - Z_min) # normalize 0 -> 1 for the colormap
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=0.1, facecolors=cm.coolwarm(N))
m = cm.ScalarMappable(cmap=cm.coolwarm)
m.set_array(Z)
plt.colorbar(m, shrink=0.8, aspect=20)
ax.view_init(30, 300)
def generate_multi_paths_df(process, num_paths=1000, timestep=24, length=2):
"""Generates multiple paths from an n-factor process, each factor is returned in a seperate df"""
times = ql.TimeGrid(length, timestep)
dimension = process.factors()
rng = ql.GaussianRandomSequenceGenerator(ql.UniformRandomSequenceGenerator(dimension * timestep, ql.UniformRandomGenerator()))
seq = ql.GaussianMultiPathGenerator(process, list(times), rng, False)
paths = [[] for i in range(dimension)]
for i in range(num_paths):
sample_path = seq.next()
values = sample_path.value()
spot = values[0]
for j in range(dimension):
paths[j].append([x for x in values[j]])
df_paths = [pd.DataFrame(path, columns=[spot.time(x) for x in range(len(spot))]) for path in paths]
return df_paths
# Define functions to map from delta to strike
def strike_from_spot_delta(tte, fwd, vol, delta, dcf_for, put_call):
sigma_root_t = vol * np.sqrt(tte)
inv_norm = norm.ppf(delta * put_call * dcf_for)
return fwd * np.exp(-sigma_root_t * put_call * inv_norm + 0.5 * sigma_root_t * sigma_root_t)
def strike_from_fwd_delta(tte, fwd, vol, delta, put_call):
sigma_root_t = vol * np.sqrt(tte)
inv_norm = norm.ppf(delta * put_call)
return fwd * np.exp(-sigma_root_t * put_call * inv_norm + 0.5 * sigma_root_t * sigma_root_t)
# World State for Vanilla Pricing
spot = 1.17858
rateDom = 0.0
rateFor = 0.0
calendar = ql.NullCalendar()
day_count = ql.Actual365Fixed()
# Set up the flat risk-free curves
riskFreeCurveDom = ql.FlatForward(calc_date, rateDom, ql.Actual365Fixed())
riskFreeCurveFor = ql.FlatForward(calc_date, rateFor, ql.Actual365Fixed())
dom_dcf_curve = ql.YieldTermStructureHandle(riskFreeCurveDom)
for_dcf_curve = ql.YieldTermStructureHandle(riskFreeCurveFor)
tenors = ['1W', '2W', '1M', '2M', '3M', '6M', '9M', '1Y', '18M', '2Y']
deltas = ['ATM', '35D Call EUR', '35D Put EUR', '25D Call EUR', '25D Put EUR', '15D Call EUR', '15D Put EUR', '10D Call EUR', '10D Put EUR', '5D Call EUR', '5D Put EUR']
vols = [[7.255, 7.428, 7.193, 7.61, 7.205, 7.864, 7.261, 8.033, 7.318, 8.299, 7.426],
[7.14, 7.335, 7.07, 7.54, 7.08, 7.836, 7.149, 8.032, 7.217, 8.34, 7.344],
[7.195, 7.4, 7.13, 7.637, 7.167, 7.984, 7.286, 8.226, 7.394, 8.597, 7.58],
[7.17, 7.39, 7.11, 7.645, 7.155, 8.031, 7.304, 8.303, 7.438, 8.715, 7.661],
[7.6, 7.827, 7.547, 8.105, 7.615, 8.539, 7.796, 8.847, 7.952, 9.308, 8.222],
[7.285, 7.54, 7.26, 7.878, 7.383, 8.434, 7.671, 8.845, 7.925, 9.439, 8.344],
[7.27, 7.537, 7.262, 7.915, 7.425, 8.576, 7.819, 9.078, 8.162, 9.77, 8.713],
[7.275, 7.54, 7.275, 7.935, 7.455, 8.644, 7.891, 9.188, 8.283, 9.922, 8.898],
[7.487, 7.724, 7.521, 8.089, 7.731, 8.742, 8.197, 9.242, 8.592, 9.943, 9.232],
[7.59, 7.81, 7.645, 8.166, 7.874, 8.837, 8.382, 9.354, 8.816, 10.065, 9.51]]
# Convert vol surface to strike surface (we need both)
full_option_surface = []
for i, name in enumerate(deltas):
delta = 0.5 if name == "ATM" else int(name.split(" ")[0].replace("D", "")) / 100.
put_call = 1 if name == "ATM" else -1 if name.split(" ")[1] == "Put" else 1
for j, tenor in enumerate(tenors):
expiry = calc_date + ql.Period(tenor)
tte = day_count.yearFraction(calc_date, expiry)
fwd = spot * for_dcf_curve.discount(expiry) / dom_dcf_curve.discount(expiry)
for_dcf = for_dcf_curve.discount(expiry)
vol = vols[j][i] / 100.
# Assume that spot delta used out to 1Y (used to be this way...)
if tte < 1.:
strike = strike_from_spot_delta(tte, fwd, vol, put_call*delta, for_dcf, put_call)
else:
strike = strike_from_fwd_delta(tte, fwd, vol, put_call*delta, put_call)
full_option_surface.append({"vol": vol, "fwd": fwd, "expiry": tenor, "tte": tte, "delta": put_call*delta, "strike": strike, "put_call": put_call, "for_dcf": for_dcf, "name": name})
full_df = pd.DataFrame(full_option_surface)
display_df = full_df.copy()
display_df['call_delta'] = 1 - (display_df['put_call'].clip(0) - display_df['delta'])
df = display_df.set_index(['tte', 'call_delta']).sort_index()[['strike']].unstack()
df = df.reindex(sorted(df.columns, reverse=True), axis=1)
fig = plt.figure(figsize=(12,9))
plt.subplot(2,1,1)
plt.plot(full_df['tte'], full_df['strike'], marker='o', linestyle='none', label='strike grid')
plt.title("Option Strike Grid, tte vs. K")
plt.grid()
plt.xlim(0, 2.1)
df