Por que a função “Soma” se torna extremamente lenta em um tamanho específico de matriz? Como EVITAR? [duplicado]

Dec 03 2020

Três métodos ("Sum", "Total @ Table" e "Do") foram usados ​​para fazer o mesmo trabalho. As funções "Soma" e "Total @ Tabela" tornam-se extremamente lentas em num = 250 (Este número pode depender da condição do computador. Meu laptop é MacBook Pro 2013 atrasado com DRAM 8G). Espero entender o motivo e como EVITá- lo

timelist = ConstantArray[0, {3, 20}];
Do[
 num = nn*1 + 239;
 mat = RandomReal[{0, 1}, {num, num, 2, 2, 2}];
 timelist[[1, nn]] = 
  Timing[r1 = Sum[mat[[l, 1]] l, {l, 1, num}];][[1]];
 timelist[[2, nn]] = 
  Timing[r2 = Total@Table[mat[[l, 1]] l, {l, 1, num}];][[1]];
 timelist[[3, nn]] = Timing[r3 = ConstantArray[0, Dimensions[r2]];
    Do[r3 = r3 + mat[[l, 1]] l, {l, 1, num}];][[1]];
 (*SameQ[r1,r2,r3]*)
 , {nn, 1, 20}]
ListLinePlot[timelist, DataRange -> {240, 260}, 
 PlotLegends -> {"Sum", "Total@Table", "Do"}, 
 AxesLabel -> {"num", "Seconds"}, ScalingFunctions -> "Log"]

Respostas

5 MichaelE2 Dec 03 2020 at 16:29

Um FYI, muito longo para um comentário, sobre uma 4ª abordagem aproveitando a vetorização no MKL. (A resposta à pergunta principal, que está conectada aos Compilelimites do sistema , pode ser encontrada em Aumento repentino no tempo ao somar mais de 250 entradas , que foi apontado por @kglr.)

timelist = ConstantArray[0, {4, 20}];
Do[num = nn*1 + 239;
 mat = RandomReal[{0, 1}, {num, num, 2, 2, 2}];
 timelist[[1, nn]] = 
  AbsoluteTiming[r1 = Sum[mat[[l, 1]] l, {l, 1, num}];][[1]];
 timelist[[2, nn]] = 
  AbsoluteTiming[r2 = Total@Table[mat[[l, 1]] l, {l, 1, num}];][[1]];
 timelist[[3, nn]] = 
  AbsoluteTiming[r3 = ConstantArray[0, Dimensions[r2]];
    Do[r3 = r3 + mat[[l, 1]] l, {l, 1, num}];][[1]];
 timelist[[4, nn]] = 
  AbsoluteTiming[r4 =  Total[mat[[All, 1]] Range[num]]; ][[1]],
 {nn, 1, 20}]
ListLinePlot[timelist, DataRange -> {240, 260}, 
 PlotLegends -> {"Sum", "Total@Table", "Do", "Total@vectorized"}, 
 AxesLabel -> {"num", "Seconds"}, ScalingFunctions -> "Log"]

r1 == r2 == r3 == r4
(*  True  *)

Em relação à minha preferência por AbsoluteTiming: Diferença entre AbsoluteTiming e Timing