Bu ailenin eşit süreksiz olduğunu göster $0$

Dec 27 2020

İzin Vermek $E$ normlu vektör uzayı olmak, $$p_K(\varphi):=\sup_{x\in E}|\varphi(x)|\;\;\;\text{for }\varphi\in E'$$ kompakt için $K\subseteq E$ ve $\sigma_c(E',E)$ ilk topolojiyi gösterir $(p_K,K\subseteq E\text{ is compact})$, yani alt uzay topolojisi $E'$ kompakt yakınsama topolojisinden miras alınmıştır. $C(K)$.

İzin Vermek $\mathcal C\subseteq C(E')$ tekdüze ol $\sigma_c(E',E)$-sürekli.

Neden bu sonuca varabiliriz $$\forall\varepsilon>0:\exists\delta>0:\forall\varphi\in E':\left\|\varphi\right\|_{E'}<\delta\Rightarrow\sup_{f\in\mathcal C}\left|f(0)-f(\varphi)\right|<\varepsilon?\tag1$$

Muhtemelen istenen iddiayı elde etmek önemsizdir, ancak oldukça karmaşık ortam nedeniyle nasıl olduğunu göremiyorum.

$(1)$ açıkçası bir tür eşit sürekliliktir $0$. İlgili olup olmadığından emin değilim, ancak Banach-Alaoğlu teoremine göre$\{\varphi\in E':\left\|\varphi\right\|_{E'}\le\delta\}$ dır-dir $\sigma_c(E',E)$herkes için kompakt $\delta>0$.

Yanıtlar

1 mechanodroid Dec 28 2020 at 14:23

Tek tip eşit süreklilik tanımını hatırlayın$\mathcal{C}$ bir dizi harita olarak $(E',\sigma_c(E',E)) \to \Bbb{R}$:

Her mahalle için $V \subseteq \Bbb{R}$ nın-nin $O$ bir mahalle var $U$ nın-nin $0$ içinde $(E',\sigma_c(E',E))$ öyle ki $$\varphi,\psi \in V \implies f(\varphi)-f(\psi) \in V, \, \text{for all }f \in \mathcal{C}.$$

Şimdi için $\psi = 0$ ve $V = \left\langle-\frac\varepsilon2, \frac\varepsilon2\right\rangle$bir mahalleyiz $U$ nın-nin $0$ öyle ki $$\varphi \in U \implies |f(\varphi)-f(0)|<\frac\varepsilon2, \, \text{for all }f \in \mathcal{C} \implies \sup_{f \in \mathcal{C}} |f(\varphi)-f(0)|\le\frac\varepsilon2<\varepsilon$$ $U$ mahalle olmak $0$ yarıçapın başlangıç ​​noktası etrafında sonlu sayıda açık topun kesişimini içerir $\delta_1, \ldots, \delta_k$ kompakt setlerin seminormları ile ilgili olarak $K_1, \ldots, K_n \subseteq E$: $$\bigcap_{k=1}^n \{\phi \in E' : p_{K_k}(\phi) < \delta_k\} \subseteq U.$$ Setleri $K_k$ bazılarıyla norm içinde $M_k > 0$ öyleyse ayarlarsak $$\delta := \min_{1 \le k \le n}\frac{\delta_k}{M_k}$$ o zaman herhangi biri için $\varphi \in E'$ sahibiz $$\|\varphi\|_{E'} < \delta \implies p_{K_k}(\varphi) = \sup_{x \in K_k}\|\varphi(x)\| \le \|\varphi\|_E'\sup_{x \in K_k}\|x\| < \delta M_k \le \delta_k$$ hepsi için $k=1, \ldots, n$ yani $$\|\varphi\|_{E'} < \delta \implies \varphi \in \bigcap_{k=1}^n \{\phi \in E' : p_{K_k}(\phi) < \delta_k\} \subseteq U \implies \sup_{f \in \mathcal{C}} |f(\varphi)-f(0)|<\varepsilon.$$

0xbadf00d Jan 04 2021 at 15:16

Yanılmıyorsam, bu daha genel bir sonuç örneği olmalı:

  • $(X,\tau)$ topolojik bir uzay olmak;
  • $Y$ normlu olmak $\mathbb R$-vektör alanı;
  • $$\overline p(f):=1\wedge\sup_{x\in X}\left\|f(x)\right\|\;\;\;\text{for }f\in C(X,\tau;Y);$$
  • $$p_K(f):=\sup_{x\in K}\left\|f(x)\right\|_Y\;\;\;\text{for }f\in C(X,\tau;Y)$$ için $\tau$-kompakt $K\subseteq X$ ve $$P:=\{p_K:K\subseteq X\text{ is }\tau\text{-compact}\}.$$
  • $(Z,d)$ metrik uzay olmak;
  • $F:C(X,\tau;Y)\to Z$ yerel dışbükey topolojiye göre sürekli olmak $C(X,\tau;Y)$ tarafından oluşturuldu $P$ ve metrik $d$ açık $Z$.

O zaman bunu kolayca görürüz $f$ norm açısından süreklidir $\overline p$ açık $C(X,\tau;Y)$ tarafından oluşturuldu $P$ ve metrik $d$ açık $Z$: İzin Vermek $f\in C(X,\tau;Y)$ ve $\varepsilon>0$. Süreklilik varsayımına göre$F$, var $P$-Semt $N$ nın-nin $f$ ile $$d(F(f),F(g))<\varepsilon\;\;\;\text{for all }g\in N\tag1.$$ İzin Vermek $U_p$ açık birim topunu göster $$C(X,\tau;Y)$$ göre $p\in P$. Yazabiliriz$N=f+N_0$ bazı $P$-Semt $N_0$ nın-nin $0$. Üstelik var$k\in\mathbb N_0$, $\tau$-kompakt $K_1,\ldots,K_k\subseteq X$ ve $\delta_0>0$ ile $$B_0:=\delta_0\bigcap_{i=1}^kU_{p_{K_i}}\subseteq N_0\tag2.$$ Şimdi izin ver $\delta\in(0,1)$ ile $\delta\le\delta_0$. Sonra,$$\delta U_{\overline p}\subseteq B_0\tag3$$ ve dolayısıyla $$d(F(f),F(g))<\varepsilon\;\;\;\text{for all }g\in f+\delta U_{\overline p}\tag4;$$ yani $f$ sürekli $f$ yerel dışbükey topolojiye göre $C(X,\tau;Y)$ tarafından oluşturuldu $P$ ve metrik $d$ açık $Z$.

Alternatif olarak, sonuç, tarafından üretilen topolojinin hemen ardından takip edilebilirdi. $P$ tarafından oluşturulan topolojiden daha kaba $\overline p$, burada tartışıldığı gibi .


Şimdi eğer $X$ normlu $\mathbb R$- vektör alanı ve $\tau$ topoloji tarafından oluşturulur $\left\|\;\dot\;\right\|_X$, sonra $$\left\|A\right\|=1\wedge\sup_{x\in X}\left\|Ax\right\|_Y\le\left\|A\right\|_{\mathfrak L(X,Y)}\tag5\;\;\;\text{for all }A\in\mathfrak L(X,Y)$$ ve dolayısıyla oluşturulan topoloji $\left\|\;\cdot\;\right\|$ tek tip operatör topolojisinden daha kabadır (yani, $\left\|\;\cdot\;\right\|_{\mathfrak L(X,Y)}$). Yani hemen anlıyoruz$F$ tarafından oluşturulan topolojiye göre süreklidir $\left\|\;\cdot\;\right\|_{\mathfrak L(X,Y)}$ ve metrik $d$ açık $Z$ yanı sıra.