Hizalama ortamı sırasında yatay boşluk nasıl değiştirilir?
Bu benim kodum, eğer biri onu test ederse, son terim tamamen sağa, yatay aralığı nasıl değiştirebilirim ki her şey solda olsun?
\documentclass[a4paper]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{amsfonts}
\usepackage{tabstackengine}
\stackMath
\makeatletter
\renewcommand\TAB@delim[1]{\scriptstyle#1}
\makeatother
\setstackgap{S}{2pt}
\begin{document}
\begin{align*} &\int _0^1\arctan ^3\left(x\right)\:dx=\frac{1}{2}\beta \left(3\right)-2\int _0^1\frac{x\arctan ^2\left(x\right)}{1+x^2}\:dx\\[5mm] &=\frac{1}{2}\beta \left(3\right)-\frac{3}{8}\ln \left(2\right)\zeta \left(2\right)+2\underbrace{\int _0^1\frac{\arctan \left(x\right)\ln \left(1+x^2\right)}{1+x^2}\:dx}_{x=\tan \left(t\right)}\\ &=\frac{1}{2}\beta \left(3\right)-\frac{3}{8}\ln \left(2\right)\zeta \left(2\right)-4\int _0^{\frac{\pi }{4}}t\ln \left(\cos \left(t\right)\right)\:dt \\[2mm] &=\frac{1}{2}\beta \left(3\right)-\frac{3}{8}\ln \left(2\right)\zeta \left(2\right)+4\ln \left(2\right)\int _0^{\frac{\pi }{4}}t-4\sum _{k=1}^{\infty }\frac{\left(-1\right)^{k+1}}{k}\int _0^{\frac{\pi \:}{4}}t\cos \left(2kx\right)\:dt \end{align*}
%\end{Large}
\end{document}
Yanıtlar
Şu anda son satırda ek bir satır sonu sağlarsanız (ve başıboş \end{Large}
yönergeyi atlarsanız ), bence denkleminiz iyi görünüyor.
Bu arada, manifold \left
ve \right
boyutlandırma ifadelerinin hiçbiri aslında hiçbir şey yapmaz - yatay aralığı bozmak ve çok fazla kod karmaşası yaratmak dışında. Bunları ihmal edin.
\documentclass[a4paper]{article}
\usepackage{amsmath}
\begin{document}
\begin{align*} \int_0^1 \!\arctan^3(x)\,dx &=\frac{1}{2}\beta(3) -2\int_0^1 \frac{x\arctan^2(x)}{1+x^2}\,dx\\[3mm] &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +2\underbrace{\int_0^1 \frac{\arctan(x)\ln(1+x^2)}{% 1+x^2}\,dx}_{x=\tan(t)}\\ &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) -4\int_0^{\frac{\pi}{4}} t\ln(\cos(t))\,dt\\[2mm] &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +4\ln(2)\int_0^{\frac{\pi}{4}} t \\ % <-- new linebreak &\quad -4\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \int_0^{\frac{\pi}{4}} t\cos(2kx)\,dt \end{align*}
\end{document}
Pakette multlined
tanımlanan ortamın kullanımı ile mathtools
:
\documentclass[a4paper]{article}
\usepackage{mathtools}
\begin{document}
\begin{align*} \int_0^1 \arctan^3(x)\,dx &=\frac{1}{2}\beta(3) -2\int_0^1 \frac{x\arctan^2(x)}{1+x^2}\,dx\\[3mm] &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +2\underbrace{\int_0^1 \frac{\arctan(x)\ln(1+x^2)}{% 1+x^2}\,dx}_{x=\tan(t)}\\ &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) -4\int_0^{\frac{\pi}{4}} t\ln(\cos(t))\,dt\\[2mm] & = \begin{multlined}[t] \frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +4\ln(2)\int_0^{\frac{\pi}{4}} t \\ % <-- new linebreak -4\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \int_0^{\frac{\pi}{4}} t\cos(2kx)\,dt \end{multlined} \end{align*}
\end{document}
Yine, bazı iyileştirmelerle birlikte başka bir varyant: Okunaklılık açısından \left ... \right
tek bir tane kullanarak , işe yaramazlık bolluğunu kaldırdım \bigl(...\bigr)
. Bunun dışında, orta büyüklükteki kesirleri nccmath
kesirli katsayılar için sistematik olarak kullandım ki bu benim görüşüme göre kesirli ifadelerle aynı görsel öneme sahip olmamalıdır.
\documentclass{article}%
\usepackage{nccmath, mathtools}
\begin{document}
\begin{align*} \int _0^1\arctan ^3(x)\:dx&=\mfrac{1}{2}\beta (3)-2\int _0^1\frac{x\arctan ^2(x)}{1+x^2}\:dx\\[5mm] &=\mfrac{1}{2}\beta (3)-\mfrac{3}{8}\ln (2)\zeta (2)+2\underbrace{\int _0^1\frac{\arctan (x)\ln (1+x^2)}{1+x^2}\:dx}_{x=\tan (t)}\\ &=\mfrac{1}{2}\beta (3)-\mfrac{3}{8}\ln (2)\zeta (2)-4\int _0^{\frac{\pi }{4}}t\ln\bigl(\cos(t)\bigr)\:dt \\[2mm] &=\mfrac{1}{2}\beta (3)\begin{aligned}[t] & -\mfrac{3}{8}\ln (2)\zeta (2)+4\ln (2)\int _0^{\frac{\pi }{4}}t {}\\[-1ex] & -4\sum _{k=1}^{\infty }\frac{(-1)^{k+1}}{k}\int _0^{\frac{\pi \:}{4}}t\cos (2kx)\:dt \end{aligned} \end{align*}
\end{document}