Python - Integrieren einer Funktion und Zeichnen von Ergebnissen

Nov 24 2020

Ich versuche, Bernoullis Strahlgleichung numerisch zu lösen und die Ergebnisse aufzuzeichnen. Die erste Ableitung der Gleichung ist die Steigung und die zweite Ableitung ist die Auslenkung. Ich näherte mich dem Problem Schritt für Schritt, zeichnete zuerst die Funktion und integrierte sie dann und zeichnete die Integrationsergebnisse in demselben Diagramm auf.

Mein Code ist bisher unten. Ich vermute, das Problem liegt in der Tatsache, dass integr.quad einen einzelnen Wert zurückgibt und ich versuche, mehrere Werte daraus zu erhalten. Weiß jemand, wie man es angeht?

from scipy import integrate
import numpy as np

from pylab import *

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

def d2y_dx2(x):
    return (-F*x)/(E*I)

a = 0.0
b = L

res, err = integrate.quad(d2y_dx2, a, b)

t = np.linspace(a,b,100)

ax = subplot(111)
ax.plot(t, d2y_dx2(t))
ax.plot(t, res(t))

show()

BEARBEITEN: Im Folgenden wird der Code mit der Antwort von Willcrack geändert. Dieser Code funktioniert jetzt, aber die Ergebnisse sind nicht korrekt. Unten habe ich den Code zum Zeichnen der Ergebnisse mit analytischen Lösungen der Strahlgleichung hinzugefügt, die korrekt sind.

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

# Integration parameters
a = 0.0
b = L

# Define the beam equation
def d2y_dx2(x,y=None):
    return (-F*x)/(E*I)


def something(x):
    return integrate.quad(d2y_dx2)[0]
    
# Define the integration1 - slope
def slope(t):
    slope_res = []
    for x in t:
        res1, err = integrate.quad(d2y_dx2, a, b)
        slope_res.append(res1)
    return slope_res

# Define the integration1 - deflection
def defl(t1):
    defl_res = []
    for t in t1:
        res2, err = integrate.dblquad(d2y_dx2,a,b, lambda x: a, lambda x: b)
        defl_res.append(res2)
    return defl_res

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

Analytische Lösung, Code und Ergebnisse unten. Die Form des abgelenkten Strahls wird umgedreht, das Ende des Strahls liegt bei x = 0.

from __future__ import division  #to enable normal floating division
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
w = 10  #beam cross sec width (mm)
h = 10  #beam cross sec height (mm)
I = (w*h**3)/12   #cross sec moment of inertia (mm^4)
I1 = (w*h**3)/12
E = 200000   #steel elast modul (N/mm^2)
L = 100  #beam length(mm)
F = 100   #force (N)

# Define equations
def d2y_dx2(x):
    return (-F*x)/(E*I)

def dy_dx(x):
    return (1/(E*I))*(-0.5*F*x**2 + 0.5*F*L**2)

def y(x):
    return (1/(E*I))*(-(1/6)*F*(x**3) + (1/2)*F*(L**2)*x - (1/3)*F*(L**3))

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)

a = 0
b = L
x = np.linspace(a,b,100)

ax1.plot(x, d2y_dx2(x))
ax2.plot(x, dy_dx(x))
ax3.plot(x, y(x))
plt.show()

Antworten

1 willcrack Nov 25 2020 at 12:02

Vielleicht können Sie so etwas versuchen

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

# Integration parameters
a = 0.0
b = L

# Define the beam equation
def d2y_dx2(x,y=None):
    return (-F*x)/(E*I)


def something(x):
    return integrate.quad(d2y_dx2)[0]
    
# Define the integration1 - slope
def slope(t):
    slope_res = []
    for x in t:
        res1, err = integrate.quad(d2y_dx2, a, b)
        slope_res.append(res1)
    return slope_res

# Define the integration1 - deflection
def defl(t1):
    defl_res = []
    for t in t1:
        res2, err = integrate.dblquad(d2y_dx2,a,b, lambda x: a, lambda x: b)
        defl_res.append(res2)
    return defl_res

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

Ergebnis:

1 willcrack Nov 25 2020 at 17:13

Ich glaube, ich habe die Lösung für den Hang gefunden. Ich werde es später mit dem anderen versuchen. Hier ist das Update.

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

# Integration parameters
a = 0.0
b = L

# Define the beam equation
def d2y_dx2(x,y=None):
    return (-F*x)/(E*I)

    
# Define the integration1 - slope
def slope(x):
    slope_res = np.zeros_like(x)
    for i,val in enumerate(x):
        y,err = integrate.quad(f,a,val)
        slope_res[i]=y
    return slope_res

# Define the integration1 - deflection
def defl(x):
    
    defl_res = np.zeros_like(x)
    for i,val in enumerate(x):
        y, err = integrate.dblquad(d2y_dx2,0,val, lambda x: 0, lambda x: val)
        defl_res[i]=y
    return defl_res

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

Neues Ergebnis:

Ich kämpfe immer noch mit dem letzten ...