Abnehmbare Singularität und Liouvilles Theorem
Bitte überprüfen Sie, ob ich eines der beiden richtig verstanden habe.
1a. Lassen$f$ ganze Funktion so sein, dass $\sup_{\mathbb C} \left |\frac{f(z)}{z} \right | < \infty$. Show$z = 0$ ist eine entfernbare Singularität von $g(z) = \frac{f(z)}{z}$.
1b. Annehmen$f$ und $g$ sind ganze Funktionen so, dass $|f| \leq K|g|$, zeige, dass $f = cg$ für alle $z \in \mathbb{C}$.
Das habe ich geschrieben
1a. Schon seit$\sup |f(z)/z| < \infty$ dann $\left |\frac{f(z)}{z} \right | < M$. Daher$\lim_{z \to 0}|zg(z)| = \lim_{z \to 0}|f(z)| \leq \lim_{z \to 0} M|z| =0.$ Das Überschreiten der Grenze auf beide Seiten ergibt also das Ergebnis.
1b. Ich denke, das ist nur die Anwendung des Liouville-Theorems$(f/g)$egal, ich habe die Antwort gefunden. Meine Antwort ist für 1b unvollständig. Benötigen Sie nur eine Überprüfung für 1a.
Danke fürs Lesen.
Antworten
Technisch gibt es ein Problem mit der Frage. Genauer gesagt sollte man schreiben$$\sup_{z\in{\mathbb C}\setminus\{0\}}\left|\frac{f(z)}z\right|<\infty,\quad (1)$$ wie $g(z)=\frac{f(z)}{z}$ kann undefiniert sein bei $z=0$.
1 (a) . Dies impliziert eindeutig (1)$f(0)=0$, sonst besteht durch Kontinuität $r>0$ so dass $$|f(z)|\geq\frac 12|f(0)|\neq 0,\forall z~{\rm with~}|z|\leq r.$$ Daraus folgt dann $$\sup_{z\in{\mathbb C}\setminus\{0\}}\left|\frac{f(z)}z\right|\geq\frac 12|f(0)|\sup_{0<|z|\leq r}\frac 1{|z|}=\infty,$$ ein Widerspruch.
Jetzt seit $f(z)$ ist ganz und $f(0)=0,$ hat man $$\lim_{z\rightarrow 0}\frac{f(z)}z=\lim_{z\rightarrow 0}\frac{f(z)-f(0)}{z-0}=f’(0).$$ Nach Riemanns entfernbarem Singularitätssatz, $z=0$ ist eine entfernbare Singularität von $g(z)$, und $g(z)$ ist analytisch wenn $g(0)$ ist definiert als $f’(0).$
1 (b) . Definieren$h(z)=\frac{f(z)}{g(z)}$ für alle $z\notin S:=\{z~|~g(z)=0\}.$ Durch ein ähnliches Argument wie in 1 (a) kann jede $z_0\in S$ ist eine entfernbare Singularität von $h(z),$ wo man Singularität durch Definieren entfernt $h(z_0)=f^{(k)}(z_0)/g^{(k)}(z_0)$ (mit $k$ die Multiplizität der Null $z_0$ zum $g(z)$). Jetzt$h(z)$ ist ganz und begrenzt, also hat man von Liouville $h(z)=c$ ist daher eine Konstante $f(x)=cg(z),$ nach Bedarf.
Bemerkung . In 1 (b), wenn$\sup_{{\mathbb C}\setminus S}|h(z)|$begrenzt ist, kann man Riemanns entfernbaren Singularitätssatz durch Potenzreihenerweiterung herausarbeiten. Wenn$z_0\in S$, dann analog zum Beweis in 1 (a), hat man $m\geq n$, wo $m$ (bzw. $n$) ist die Multiplizität von Null $z_0$ von $f(z)$ (bzw. $g(z)$). Erweiterung in Potenzreihen bei$z_0$, hat man $$f(z)=(z-z_0)^mf_1(z)=a_n(z-z_0)^n+\cdots+a_m(z-z_0)^m+\cdots$$ und $$g(z)=(z-z_0)^ng_1(z)=b_n(z-z_0)^n+\cdots,$$ wo $$f_1(z_0)\neq 0,g_1(z_0)\neq 0,a_n=\frac{f^{(n)}(z_0)}{n!},b_n=\frac{g^{(n)}(z_0)}{n!}\neq 0.$$ (Beachten Sie, dass $a_n=\cdots=a_{m-1}=0$ wenn $m>n$.)
Nach dem Löschen gemeinsamer Nullen bei $z_0$, man sieht, dass $\frac{f(z)}{g(z)}=(z-z_0)^{m-n}\frac {f_1(z)}{g_1(z)}$ hat Potenzreihenerweiterung bei $z_0$ mit konstanter Laufzeit $$\frac{a_n}{b_n}=\frac{f^{(n)}(z_0)}{g^{(n)}(z_0)},$$ Welches ist der Wert, für den neu definiert werden soll $h(z_0)$. (Beachten Sie, dass$h(z_0)=0$ wenn $m>n$.)
Wie , $f(z)$ ist ganz, also $g(z)=\frac{f(z)}{z} $ ist analytisch auf $0 \lt |z-0| \lt \delta $ Nun, seit $sup_{\mathbb{C}} |g(z)| \lt \infty $ , damit, $g(z)$ muss begrenzt werden.
Nach Riemanns entfernbarem Singularitätssatz $g(z)$ ist entweder analytisch oder hat entfernbare Singularität bei $z=0$.
Analytizität ist möglich, wenn wir die Funktion neu definieren als: $F(z) = \begin{cases} \frac{f(z)}{z}, & \text{if $z \ neq 0 $} \\ 0, & \text{if $z = 0 $} \end{cases} $
Bearbeiten : Nun, wie Sie gezeigt haben,$\lim_{z \to 0} |zg(z)| \le 0 \implies |\lim_{z\to 0 } zg(z)| \le 0 \implies \lim_{z\to 0 } zg(z) = 0 $
(da die Modulfunktion stetig ist) Daraus können Sie direkt schließen $g(z)=\frac{f(z)}{z} $ haben entfernbare Singularität bei $z=0$.
Ihre Antwort scheint nun in Ordnung zu sein.