Lokales Beobachterkoordinatensystem am Satellitenpanel (LVLH-Koordinatensystem)

Nov 27 2020

Im Himmelsfeld möchte ich die Alt-Az-Entfernung von einem Referenzsatelliten zum nächsten berechnen (für die Antennenausrichtungssimulation). Meine aktuelle Problemumgehung besteht darin, den Referenzbeobachter in sat1-Höhe zu erstellen und die Alt-Az-Winkel zu berechnen:

sat_observer = sat_ref.subpoint()
ref_PoV = Topos(sat_observer.latitude, sat_observer.longitude, elevation_m=sat_observer.elevation.m)

satellite = Sat(name)
orbit = (satellite - ref_PoV).at(time[0])
el, az, distance = orbit.altaz()

Code ist in der Lage, relative Ausrichtungswinkel auf einmal zu berechnen. Diese Methode funktioniert nicht für absolute Werte, da die Alt-Az-Referenz immer auf die Erde nach Norden zeigt (das lokale Beobachterkoordinatensystem am Satellitenpanel dreht sich im nächsten Moment um die Alt-Achse).

Was wäre der effizienteste Weg, um ein lokales Koordinatensystem (LVLH-Rahmen) am Satelliten im Himmelsfeld zu definieren, um die Alt-Az-Winkel für diesen LVLH-Rahmen zu erhalten?

Antworten

4 matbru Dec 02 2020 at 22:04

Nach der Hilfe von @uhoh, die sich mit diesem Beitrag und der Diskussion hier befasste, gelang es mir, dieses minimale Arbeitsbeispiel zu erstellen. Kommentare geschätzt.

from skyfield.api import Loader, EarthSatellite
from skyfield.api import Topos, load
from skyfield.timelib import Time
import skyfield.functions as sf
from sklearn import preprocessing
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

halfpi, pi, twopi = [f*np.pi for f in [0.5, 1, 2]]
degs, rads = 180/pi, pi/180

ts = load.timescale()
line1 = '1 25544U 98067A   14020.93268519  .00009878  00000-0  18200-3 0  5082'
line2 = '2 25544  51.6498 109.4756 0003572  55.9686 274.8005 15.49815350868473'
satellite = EarthSatellite(line1, line2, 'ISS (ZARYA)', ts)
print(satellite)

line1 = '1 43205U 18017A   18038.05572532 +.00020608 -51169-6 +11058-3 0  9993'
line2 = '2 43205 029.0165 287.1006 3403068 180.4827 179.1544 08.75117793000017'
satellite2 = EarthSatellite(line1, line2, 'Roadster', ts)
print(satellite2)

time = ts.utc(2020, 24, 11, np.arange(0, 1, 0.01))

#calculate LVLH reference frame for the reference sat
#Z = - R / ||R||
#Y = Z X V / ||Z X V||
#X = Y X Z
R = satellite.at(time).position.km.T
V = satellite.at(time).velocity.km_per_s.T
Z = -preprocessing.normalize(R, norm='l2')
Y = preprocessing.normalize(np.cross(Z, V), norm='l2')
X = np.cross(Y, Z)
Rpos = satellite2.at(time).position.km.T

#check: LVLH coordinate frame at n events
fig = plt.figure(figsize=[10, 8])  # [12, 10]
ax  = fig.add_subplot(1, 1, 1, projection='3d')
axis_length=20
for i in range(0,5):
    x, y, z = R[i,:]
    u, v, w = X[i,:]
    ax.quiver(x, y, z, u, v, w, length=axis_length, color='red')
    u, v, w = Y[i,:]
    ax.quiver(x, y, z, u, v, w, length=axis_length, color='blue')
    u, v, w = Z[i,:]
    ax.quiver(x, y, z, u, v, w, length=axis_length, color='green')

#construct the rotation matrix at time 0
RM = np.array([X[0,:],Y[0,:],Z[0,:]]).T
#view vector PoV = R_sat - R_ref
PoV = Rpos[:] - R
#rotate PoV to LVLH coordinate system
PoV_LHLV = RM.dot(PoV[0,:])
#go to spherical CS
r1, el1, az1 = sf.to_spherical(PoV_LHLV)

# Plot the view angles in polar plot.
plt.figure()
ax = plt.subplot(111, projection='polar')
ax.set_rlim([-90, 90])
ax.set_theta_zero_location('N')
ax.set_theta_direction(1)
ax.set_title('Visibility of satellite2 form satellite PoV', y=1.1)
ax.plot(az1, el1*degs, 'r+')