xarray Computing Monatsmittelwert aus mehrjährigem netcdf

Dec 18 2020

Ich habe eine 2-m-Temperatur-Netcdf-Datei von ERA5, die von 2000 bis 2019 für die Monate 04 bis 10 reicht und insgesamt 13680 Zeitschritte und eine Lat-Lon-Dimension von 61 x 161 ergibt. Ich möchte einen monatlichen Mittelwert aller täglichen Zeitschritte für jedes Jahr separat erstellen. Zum Beispiel hätten wir den monatlichen Mittelwert der Daten im April 2000, im Mai 2000 und so weiter. Ich habe den folgenden Code mit xarray resample ausprobiert, aber es treten zwei Probleme auf.

  1. Aus irgendeinem Grund scheint der Mittelwert den Mittelwert für alle Jahre zu tun.
  2. Die Resample-Funktion erstellt die Monate 01, 02, 03, 11 und 12, obwohl keine Daten dafür vorliegen!

Hier ist, wovon ich spreche:

import xarray as xr
ds = xr.open_dataset(netcdf)
monthly_data=ds.resample(time='1M').mean()

Wir können uns den Zeitstempel ansehen, der den monatlichen Zeitschritt anzeigt, einschließlich nicht verwandter Monate.

print(np.array(monthly_data.time))
array(['2000-04-30T00:00:00.000000000', '2000-05-31T00:00:00.000000000',
       '2000-06-30T00:00:00.000000000', '2000-07-31T00:00:00.000000000',
       '2000-08-31T00:00:00.000000000', '2000-09-30T00:00:00.000000000',
       '2000-10-31T00:00:00.000000000', '2000-11-30T00:00:00.000000000',
       '2000-12-31T00:00:00.000000000', '2001-01-31T00:00:00.000000000',

Um den Inhalt der Temperatur zu überprüfen, habe ich die Daten in einen Datenrahmen umgewandelt.

temp_ar = np.array(monthly_data.t2m)    
print(pd.DataFrame(temp_ar[0,:,:]).head())
          0           1           2    ...         158         159         160
0  270.940613  270.911652  270.926727  ...         NaN         NaN         NaN
1  271.294952  271.256744  271.250946  ...  272.948608  272.974731  272.998535
2  271.416779  271.457214  271.483459  ...  273.123169  273.079285  273.058563
3  271.848755  271.791382  271.784058  ...         NaN  273.264038         NaN
4  272.226837  272.144928  272.123016  ...         NaN         NaN         NaN

print(pd.DataFrame(temp_ar[1,:,:]).head())
   0    1    2    3    4    5    6    ...  154  155  156  157  158  159  160
0  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
1  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
2  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
3  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN

Das 2. Array (das dem Monat 05 von 2000 entspricht) sollte keine Nans haben, aber es funktioniert und es ist für alle anderen Zeitschritte (außer für das letzte aus irgendeinem Grund) so. Würde jemand wissen, warum dies geschieht?

Hier ist der Originaldatensatz

print(ds)
<xarray.Dataset>
Dimensions:    (latitude: 61, longitude: 161, time: 13680)
Coordinates:
  * longitude  (longitude) float32 -80.0 -79.9 -79.8 -79.7 ... -64.2 -64.1 -64.0
  * latitude   (latitude) float32 50.0 49.9 49.8 49.7 ... 44.3 44.2 44.1 44.0
  * time       (time) datetime64[ns] 2000-04-01 ... 2018-10-30T23:00:00
Data variables:
    t2m        (time, latitude, longitude) float32 ...
Attributes:
    Conventions:  CF-1.6
    history:      2020-12-07 03:50:31 GMT by grib_to_netcdf-2.16.0: /opt/ecmw...

Jede Hilfe wäre. Vielleicht sollte ich eine andere Methode ausprobieren? Prost!

Antworten

2 lhoupert Dec 18 2020 at 14:23

Ich denke, jeder einfache Weg wäre, die Methode anzuwendengroupby

Beispiel:

da = xr.DataArray(
    np.linspace(0, 1673, num=1674),
    coords=[pd.date_range("1/1/2000", "31/07/2004", freq="D")],
    dims="time",
)
da

Ausgabe:

<xarray.DataArray (time: 1674)>
array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.671e+03, 1.672e+03, 1.673e+03])
Coordinates:
  * time     (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2004-07-31

Für den Jahresmittelwert können Sie Folgendes tun:

da.groupby('time.year').mean()

Ausgabe:

<xarray.DataArray (year: 5)>
array([ 182.5,  548. ,  913. , 1278. , 1567. ])
Coordinates:
  * year     (year) int64 2000 2001 2002 2003 2004

Für einen Mittelwert pro Monat eines anderen Jahres können Sie einen Multi-Index erstellen:

year_month_idx = pd.MultiIndex.from_arrays([da['time.year'], da['time.month']])
da.coords['year_month'] = ('time', year_month_idx)
da.groupby('year_month').mean()

Ausgabe:

<xarray.DataArray (year_month: 55)>
array([  15. ,   45. ,   75. ,  105.5,  136. ,  166.5,  197. ,  228. ,  258.5,
        289. ,  319.5,  350. ,  381. ,  410.5,  440. ,  470.5,  501. ,  531.5,
        562. ,  593. ,  623.5,  654. ,  684.5,  715. ,  746. ,  775.5,  805. ,
        835.5,  866. ,  896.5,  927. ,  958. ,  988.5, 1019. , 1049.5, 1080. ,
       1111. , 1140.5, 1170. , 1200.5, 1231. , 1261.5, 1292. , 1323. , 1353.5,
       1384. , 1414.5, 1445. , 1476. , 1506. , 1536. , 1566.5, 1597. , 1627.5,
       1658. ])
Coordinates:
 * year_month          (year_month) MultiIndex
 * year_month_level_0  (year_month) int64 2000 2000 2000 ... 2002 2002 2002
 * year_month_level_1  (year_month) int64 1 2 3 4 5 6 7 8 ... 11 12 1 2 3 4 5 6