Drehen Sie das breite bis lange Format und verschachteln Sie dann die Spalten
Ich bekomme Daten, die in einem breiten Format kommen. Jede Zeile bezieht sich auf eine Variable außerhalb der aktuellen Tabelle und mögliche Werte, die für diese Variable relevant sind. Ich versuche: (1) in ein langes Format zu schwenken und (2) geschwenkte Werte zu verschachteln.
Beispiel
library(tibble)
df_1 <-
tribble(~key, ~values.male, ~values.female, ~values.red, ~values.green, ~value,
"gender", 0.5, 0.5, NA, NA, NA,
"age", NA, NA, NA, NA, "50",
"color", NA, NA, TRUE, FALSE, NA,
"time_of_day", NA, NA, NA, NA, "noon")
## # A tibble: 4 x 6
## key values.male values.female values.red values.green value
## <chr> <dbl> <dbl> <lgl> <lgl> <chr>
## 1 gender 0.5 0.5 NA NA NA
## 2 age NA NA NA NA 50
## 3 color NA NA TRUE FALSE NA
## 4 time_of_day NA NA NA NA noon
In diesem Beispiel sehen wir, dass gender
entweder female = 0.5
und haben kann male = 0.5
. Auf der anderen Seite age
kann nur ein einziger Wert von haben 50
. Aus Zeile 3 erfahren wir, dass color
Werte von red = TRUE
und green = FALSE
, und vorliegen können time_of_day = noon
.
Daher sollte eine schwenkbare Tabelle die verschachtelte Form haben:
my_pivoted_df <-
structure(
list(
var_name = c("gender", "age", "color", "time_of_day"),
vals = list(
structure(
list(
level = c("male", "female"),
value = c(0.5,
0.5)
),
row.names = c(NA, -2L),
class = c("tbl_df", "tbl", "data.frame")
),
"50",
structure(
list(
level = c("red", "green"),
value = c(TRUE,
FALSE)
),
row.names = c(NA, -2L),
class = c("tbl_df", "tbl", "data.frame")
),
"noon"
)
),
row.names = c(NA, -4L),
class = c("tbl_df", "tbl",
"data.frame")
)
## # A tibble: 4 x 2
## var_name vals
## <chr> <list>
## 1 gender <tibble [2 x 2]>
## 2 age <chr [1]>
## 3 color <tibble [2 x 2]>
## 4 time_of_day <chr [1]>
Mein Versuch, das zu lösen
Es gibt ein paar Probleme mit df_1
. Erstens ist die aktuelle Benennung von Spalten unpraktisch. Überschriften wie value
sind nicht ideal, weil sie mit pivot_longer()
dem ".value"
Mechanismus in Konflikt stehen . Zweitens df_1
hat values
(im Plural), wenn das key
mehr als eine Option hat (z. B. "rot" und "grün" für color
), aber value
(Singular), wenn es nur eine Option für key
(wie mit age
) gibt. Unten ist mein erfolgloser Code, inspiriert von dieser Antwort .
library(tidyr)
library(dplyr)
df_1 %>%
rename_with( ~ paste(.x, "single", sep = "."), .cols = value) %>% ## changed the header because otherwise it breaks
pivot_longer(cols = starts_with("val"),
names_to = c("whatevs", ".value"), names_sep = "\\.")
## # A tibble: 8 x 7
## key whatevs male female red green single
## <chr> <chr> <dbl> <dbl> <lgl> <lgl> <chr>
## 1 gender values 0.5 0.5 NA NA NA
## 2 gender value NA NA NA NA NA
## 3 age values NA NA NA NA NA
## 4 age value NA NA NA NA 50
## 5 color values NA NA TRUE FALSE NA
## 6 color value NA NA NA NA NA
## 7 time_of_day values NA NA NA NA NA
## 8 time_of_day value NA NA NA NA noon
Mir fehlen einige Tricks, um das zu lösen.
Antworten
Ein ordentlicher Ansatz, um das gewünschte Ergebnis zu erzielen, könnte folgendermaßen aussehen:
library(tibble)
df_1 <-
tribble(~key, ~values.male, ~values.female, ~values.red, ~values.green, ~value,
"gender", 0.5, 0.5, NA, NA, NA,
"age", NA, NA, NA, NA, "50",
"color", NA, NA, TRUE, FALSE, NA,
"time_of_day", NA, NA, NA, NA, "noon")
library(tidyr)
library(dplyr)
library(purrr)
df_pivoted <- df_1 %>%
mutate(across(everything(), as.character)) %>%
pivot_longer(-key, names_to = "level", names_prefix = "^values\\.", values_drop_na = TRUE) %>%
group_by(key) %>%
nest() %>%
mutate(data = map(data, ~ if (all(.x$level == "value")) deframe(.x) else .x))
df_pivoted
#> # A tibble: 4 x 2
#> # Groups: key [4]
#> key data
#> <chr> <list>
#> 1 gender <tibble [2 × 2]>
#> 2 age <chr [1]>
#> 3 color <tibble [2 × 2]>
#> 4 time_of_day <chr [1]>
BEARBEITEN Nach der Klarstellung in Ihren Kommentaren zum gewünschten Ergebnis könnten wir einfach die Map-Anweisung als Ende entfernen (die im Grunde genommen zum Konvertieren der Tabellen für Kategorien ohne Ebenen in einen Vektor gedacht war) und vor dem Verschachteln eine mutierte Anweisung hinzufügen, um das zu ersetzen Level mit NA für Kategorien ohne level
:
pivot_nest <- function(x) {
mutate(x, across(everything(), as.character)) %>%
pivot_longer(-key, names_to = "level", names_prefix = "^values\\.", values_drop_na = TRUE) %>%
group_by(key) %>%
mutate(level = ifelse(all(level == "value"), NA_character_, level)) %>%
nest()
}
df_pivoted <- df_1 %>%
pivot_nest()
df_pivoted
#> # A tibble: 4 x 2
#> # Groups: key [4]
#> key data
#> <chr> <list>
#> 1 gender <tibble [2 × 2]>
#> 2 age <tibble [1 × 2]>
#> 3 color <tibble [2 × 2]>
#> 4 time_of_day <tibble [1 × 2]>
df_pivoted$data
#> [[1]]
#> # A tibble: 2 x 2
#> level value
#> <chr> <chr>
#> 1 male 0.5
#> 2 male 0.5
#>
#> [[2]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> 50
#>
#> [[3]]
#> # A tibble: 2 x 2
#> level value
#> <chr> <chr>
#> 1 red TRUE
#> 2 red FALSE
#>
#> [[4]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> noon
df_2 <- tribble(~key, ~value, "age", "50", "income", "100000", "time_of_day", "noon")
df_pivoted2 <- df_2 %>%
pivot_nest()
df_pivoted2
#> # A tibble: 3 x 2
#> # Groups: key [3]
#> key data
#> <chr> <list>
#> 1 age <tibble [1 × 2]>
#> 2 income <tibble [1 × 2]>
#> 3 time_of_day <tibble [1 × 2]>
df_pivoted2$data
#> [[1]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> 50
#>
#> [[2]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> 100000
#>
#> [[3]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> noon
Eine Option, die denselben Ausgabetyp wie die bereitgestellte Eingabe zurückgibt:
df_1 %>%
group_split(key) %>%
map_dfr(~ select(., where(~ !all(is.na(.)))) %>%
pivot_longer(-key, names_to = "level", names_prefix = "^values\\.") %>%
summarise(key = first(key),
vals = if(n() == 1) list(value) else list(tibble(level, value))))
key vals
<chr> <list>
1 age <chr [1]>
2 color <tibble [2 × 2]>
3 gender <tibble [2 × 2]>
4 time_of_day <chr [1]>
Die Struktur der Ausgabe:
$ key : chr [1:4] "age" "color" "gender" "time_of_day" $ vals:List of 4
..$ : chr "50" ..$ : tibble [2 × 2] (S3: tbl_df/tbl/data.frame)
.. ..$ level: chr [1:2] "red" "green" .. ..$ value: logi [1:2] TRUE FALSE
..$ : tibble [2 × 2] (S3: tbl_df/tbl/data.frame) .. ..$ level: chr [1:2] "male" "female"
.. ..$ value: num [1:2] 0.5 0.5 ..$ : chr "noon"
Hier ist eine data.table
Lösung, weil ich mich mit dem melt
und wohler fühle dcast
, aber leicht übertragbar sein sollte auf dplyr
:
library(data.table)
df <- setDT(df_1)
plouf <- melt(df,measure.vars = patterns("value")) %>%
.[!is.na(value),.(key,level = gsub("values.","",variable),value)]
das gibt:
key level value
1: gender male 0.5
2: gender female 0.5
3: color red TRUE
4: color green FALSE
5: age value 50
6: time_of_day value noon
Sie können jetzt einfach die eindeutigen key
Werte durchlaufen, um das auszugeben, was Sie möchten:
keylist <- unique(plouf$key)
result <- tibble(varname = keylist,
vals = lapply(keylist,function(x){
if(plouf[x == key,level[1]] != "value"){
plouf[x == key,.(level,value)]
}else{
plouf[x == key,value]
}
})
)
Hier erhalten Sie Ihr verschachteltes tibble (mit data.tables und Zeichen darin)