Bagaimana menghitung a $\sum_{n=0}^{\infty}{\frac{2^n}{(2n+1){2n\choose n}}}$
Saya butuh bantuan dengan latihan berikut:
Evaluasi $$\sum_{n=0}^{\infty}{\frac{2^n}{(2n+1){2n\choose n}}}\\\text{Hint: Use identity}\int_0^{\pi/2}{\sin^{2k+1}x\;dx}=\frac{2^{2k}k!^2}{(2k+1)!}$$
Upaya saya:
$$\sum_{n=0}^{\infty}{\frac{2^n}{(2n+1){2n\choose n}}}=\sum_{n=0}^{\infty}{\frac{2^n}{(2n+1){\frac{2n!}{(2n-n)!n!}}}}\\=\sum_{n=0}^{\infty}{\frac{2^nn!^2}{(2n+1)!}}=\sum_{n=0}^{\infty}{\frac{2^n2^nn!^2}{2^n(2n+1)!}}=\sum_{n=0}^{\infty}{\frac{2^{2n}n!^2}{2^n(2n+1)!}}$$
Menerapkan identitas
$$\sum_{n=0}^{\infty}{\frac{2^{2n}n!^2}{2^n(2n+1)!}}=\sum_{n=0}^\infty{\frac{1}{2^{2n}}\int_0^{\pi/2}{\sin^{2n+1}x\;dx}}$$
Dan di sini saya terjebak, karena saya tidak yakin apakah saya dapat melakukan perubahan apa pun terkait jumlah dan integral, bantuan atau tip apa pun akan membantu. Terima kasih!
Jawaban
Ekspresi akhir Anda memiliki kesalahan kecil. Persamaan yang ingin Anda tulis adalah
$$\sum_{n=0}^\infty \frac{2^n}{(2n+1)\binom{2n}{n}}=\sum_{n=0}^\infty \frac1{2^n}\int_0^{\pi/2}\sin^{2n+1}(x)\,dx$$
Sekarang, jika kita mengubah urutan penjumlahan dan integrasi (valid oleh konvergensi seragam), maka kita menemukannya
$$\sum_{n=0}^\infty \frac{2^n}{(2n+1)\binom{2n}{n}}=\int_0^{\pi/2}\sin(x)\sum_{n=0}^\infty \frac1{2^n}\left(\sin^{2}(x)\right)^n\,dx$$
Selanjutnya, jumlahkan deret geometris dan lakukan integral yang dihasilkan. Bisakah Anda menyelesaikan ini sekarang?
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\sum_{n = 0}^{\infty}{2^{n} \over \pars{2n + 1}{2n \choose n}}} = \sum_{n = 0}^{\infty}2^{n}\,{\Gamma\pars{n + 1}\Gamma\pars{n + 1} \over \Gamma\pars{2n + 2}} = \sum_{n = 0}^{\infty}2^{n}\int_{0}^{1}x^{n}\pars{1 - x}^{n}\,\dd x \\[5mm] = &\ \int_{0}^{1}\sum_{n = 0}^{\infty}\bracks{2x\pars{1 - x}}^{\, n}\,\dd x = \int_{0}^{1}{\dd x \over 1 - 2x\pars{1 - x}} = {1 \over 2}\int_{0}^{1}{\dd x \over x^{2} - x + 1/2} \\[5mm] = &\ {1 \over 2}\int_{0}^{1}{\dd x \over \pars{x - 1/2}^{\, 2} + 1/4} = {1 \over 2}\int_{-1/2}^{1/2}{\dd x \over x^{2} + 1/4} = \int_{0}^{1/2}{\dd x \over x^{2} + 1/4} \\[5mm] = &\ 4\,{1 \over 2}\int_{0}^{1/2}{2\,\dd x \over \pars{2x}^{2} + 1} = 2\int_{0}^{1}{\dd x \over x^{2} + 1} = \bbx{\pi \over 2} \\ & \end{align}
Inilah solusi singkat dari seorang teman :
Kami ada di sini
$$\frac{\arcsin(x)}{\sqrt{1-x^2}}=\sum_{n=1}^\infty \frac{(2x)^{2n-1}}{n{2n\choose n}}=\sum_{n=0}^\infty \frac{(2x)^{2n+1}}{(n+1){2n+2\choose n+1}}=\sum_{n=0}^\infty \frac{(2x)^{2n+1}}{(2n+1){2n\choose n}}$$
$$\overset{x=1/\sqrt{2}}{\Longrightarrow} \sum_{n=0}^\infty \frac{(\sqrt{2})^{2n+1}}{(2n+1){2n\choose n}}=\frac{\arcsin(\frac1{\sqrt{2}})}{\sqrt{1-1/2}}=\frac{\sqrt{2}\pi}{2}$$
$$\Longrightarrow \sum_{n=0}^\infty \frac{2^n}{(2n+1){2n\choose n}}=\frac{\pi}{2}$$
Mulailah dengan fungsi beta
$$\int_0^{\pi/2}\sin^{2a-1}(x)\cos^{2b-1}(x)dx=\frac12\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
Set $a=n+1$ dan $b=1/2$ kita punya
$$\int_0^{\pi/2}\sin^{2n+1}(x)dx=\frac12\frac{\Gamma(n+1)\Gamma(1/2)}{\Gamma(n+3/2)}=\frac{\sqrt{\pi}}2\frac{\Gamma(n+1)}{(n+1/2)\Gamma(n+1/2)}$$
Dengan rumus duplikasi Lengendre $\Gamma(n+1/2)=\frac{\sqrt{\pi}\Gamma(2n+1)}{4^n\Gamma(n+1)}$ kita mendapatkan
$$\int_0^{\pi/2}\sin^{2n+1}(x)dx=\frac{4^n \Gamma^2(n+1)}{(2n+1)\Gamma(2n+1)}=\frac{4^n}{(2n+1){2n\choose n}}$$
Bagilah kedua sisi dengan $2^n$ kemudian $\sum_{n=0}^\infty$ kita mendapatkan
$$\sum_{n=0}^\infty\frac{2^n}{(2n+1){2n\choose n}}=\int_0^{\pi/2}\sin x\left(\sum_{n=0}^\infty\left(\frac{\sin^2x}{2}\right)^n\right)dx$$
$$=\int_0^{\pi/2}\sin x\left(\frac{1}{1-\frac{\sin^2x}{2}}\right)dx=\int_0^{\pi/2}\frac{2\sin x}{2-\sin^2x}dx$$
$$=\int_0^{\pi/2}\frac{2\sin x}{1+\cos^2x}dx=-2\arctan(\cos x)|_0^{\pi/2}=-2[\arctan(0)-\arctan(1)]=\frac{\pi}{2}$$