Bagilah semua nilai dengan baris referensi
Meskipun ini terlihat mirip dengan ini , saya mencari solusi yang "rapi" ...
Mari kita lihat data berikut (itu komposisi batuan untuk beberapa unsur kimia, jika Anda penasaran):
# A tibble: 4 x 15
Rock La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Upper CC 31 63 7.1 27 4.7 1 4 0.7 3.9 0.83 2.3 0.3 1.96 0.31
2 Middle CC 24 53 5.8 25 4.6 1.4 4 0.7 3.8 0.82 2.3 0.32 2.2 0.4
3 Lower CC 8 20 2.4 11 2.8 1.1 3.1 0.48 3.1 0.68 1.9 0.24 1.5 0.25
4 chondrite 0.235 0.603 0.0891 0.452 0.147 0.056 0.197 0.0363 0.243 0.0556 0.159 0.0242 0.162 0.0243
(lihat di bagian akhir untuk dput)
Ini terbuat dari tiga sampel dan nilai referensi (chondrite). Saya ingin menormalkan nilai setiap elemen dengan chondrite, untuk setiap sampel, yaitu dapatkan sesuatu seperti itu:
# A tibble: 4 x 15
Rock La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Upper CC 132. 104. 79.7 59.7 32.0 17.9 20.3 19.3 16.0 14.9 14.5 12.4 12.1 12.8
2 Middle CC 102. 87.9 65.1 55.3 31.3 25 20.3 19.3 15.6 14.8 14.5 13.2 13.6 16.5
3 Lower CC 34.0 33.2 26.9 24.3 19.0 19.6 15.7 13.2 12.8 12.2 12.0 9.92 9.26 10.3
4 chondrite 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Di mana, tentu saja, 132 pertama untuk df ["CC Atas", "La"] berasal dari 31 / 0,235, yaitu df ["CC Atas", "La"] / df ["chondrite", "La"]
Ini sepele di excel, dan bisa dilakukan di R sederhana dengan sesuatu di sepanjang baris
apply(df[,-1],1,FUN=function(z){return(z/df[4,-1])})
Memberi atau menerima beberapa unlist () dan kesenangan lainnya.
Tapi bagaimana saya melakukan ini dengan idiom tidyverse? Saya mulai membangun
df %>% mutate(across( where(is.numeric), ... ? .... ) )
... tapi tidak bisa melangkah lebih jauh.
Generalisasi / pertanyaan terkait: daripada dinormalisasi dengan df [4,], normalkan dengan vektor bernama sembarang.
dput(df)
structure(list(Rock = c("Upper CC", "Middle CC", "Lower CC",
"chondrite"), La = c(31, 24, 8, 0.2347), Ce = c(63, 53, 20, 0.6032
), Pr = c(7.1, 5.8, 2.4, 0.0891), Nd = c(27, 25, 11, 0.4524),
Sm = c(4.7, 4.6, 2.8, 0.1471), Eu = c(1, 1.4, 1.1, 0.056),
Gd = c(4, 4, 3.1, 0.1966), Tb = c(0.7, 0.7, 0.48, 0.0363),
Dy = c(3.9, 3.8, 3.1, 0.2427), Ho = c(0.83, 0.82, 0.68, 0.0556
), Er = c(2.3, 2.3, 1.9, 0.1589), Tm = c(0.3, 0.32, 0.24,
0.0242), Yb = c(1.96, 2.2, 1.5, 0.1625), Lu = c(0.31, 0.4,
0.25, 0.0243)), row.names = c(NA, -4L), class = c("tbl_df",
"tbl", "data.frame"))
Jawaban
Kamu dapat memakai :
library(dplyr)
df %>% mutate(across(where(is.numeric), ~./.[Rock == "chondrite"]))
# Rock La Ce Pr Nd Sm Eu Gd Tb Dy
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Upper … 132. 104. 79.7 59.7 32.0 17.9 20.3 19.3 16.1
#2 Middle… 102. 87.9 65.1 55.3 31.3 25.0 20.3 19.3 15.7
#3 Lower … 34.1 33.2 26.9 24.3 19.0 19.6 15.8 13.2 12.8
#4 chondr… 1 1 1 1 1 1 1 1 1
# … with 5 more variables: Ho <dbl>, Er <dbl>, Tm <dbl>,
# Yb <dbl>, Lu <dbl>
Menggunakan perhitungan matriks.
m <- t(dat[-1])
dat[-1] <- t(m / m[,4])
# Rock La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
# 1 Upper CC 131.91489 104.47761 79.68575 59.73451 31.97279 17.85714 20.30457 19.28375 16.04938 14.92806 14.46541 12.396694 12.098765 12.75720
# 2 Middle CC 102.12766 87.89386 65.09540 55.30973 31.29252 25.00000 20.30457 19.28375 15.63786 14.74820 14.46541 13.223140 13.580247 16.46091
# 3 Lower CC 34.04255 33.16750 26.93603 24.33628 19.04762 19.64286 15.73604 13.22314 12.75720 12.23022 11.94969 9.917355 9.259259 10.28807
# 4 chondrite 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.00000
Data
dat <- structure(list(Rock = c("Upper CC", "Middle CC", "Lower CC",
"chondrite"), La = c(31, 24, 8, 0.235), Ce = c(63, 53, 20, 0.603
), Pr = c(7.1, 5.8, 2.4, 0.0891), Nd = c(27, 25, 11, 0.452),
Sm = c(4.7, 4.6, 2.8, 0.147), Eu = c(1, 1.4, 1.1, 0.056),
Gd = c(4, 4, 3.1, 0.197), Tb = c(0.7, 0.7, 0.48, 0.0363),
Dy = c(3.9, 3.8, 3.1, 0.243), Ho = c(0.83, 0.82, 0.68, 0.0556
), Er = c(2.3, 2.3, 1.9, 0.159), Tm = c(0.3, 0.32, 0.24,
0.0242), Yb = c(1.96, 2.2, 1.5, 0.162), Lu = c(0.31, 0.4,
0.25, 0.0243)), class = "data.frame", row.names = c("1",
"2", "3", "4"))
Menggunakan data.table
library(data.table)
setDT(df1)[, (names(df1)[-1]) := lapply(.SD, function(x)
x/x[match( "chondrite", Rock)]), .SDcols = -1]