penyelesaian, limit berikut

Aug 15 2020

Jadi, berikut ini adalah pertanyaan yang diberikan:

Saya bisa menyelesaikannya sebagian, inilah pendekatan saya: Batasnya berbentuk$(A+B)/C$di mana$A$dan$B$kedua pendekatan$e^3$ketika$C$pendekatan$0$,

Ini dapat ditemukan hanya dengan mengevaluasi$A$dan$B$terpisah.

Sekarang, kita dapat menulis limitnya sebagai$$ \lim_{t \to 0} [(1+3t+2t^2)^{1/t} - e^3]/t -\lim_{t \to 0} [(1+3t-2t^2)^{1/t} - e^3]/t $$

tapi saya tidak bisa mengevaluasi kedua batas ini setidaknya menggunakan aturan LH karena turunan dari pembilang adalah ekspresi yang cukup panjang. Mohon sarankan cara untuk menyelesaikan pertanyaan ini, semua bantuan sangat dihargai.

Jawaban

2 enzotib Aug 15 2020 at 19:19

\begin{align} &\lim_{t\to0}\frac{1}{t}\left[(1+3t+2t^2)^{1/t}-(1+3t+2t^2)^{1/t}\right]=\\ &\qquad=\lim_{t\to0}\frac{1}{t}\left[(1+3t+2t^2)^{\frac{1}{3t+2t^2}\frac{3t+2t^2}{t}}-(1+3t-2t^2)^{\frac{1}{3t-2t^2}\frac{3t-2t^2}{t}}\right]=\\ &\qquad=\lim_{t\to0}\frac{1}{t}\left[e^{\frac{3t+2t^2}{t}}-e^{\frac{3t-2t^2}{t}}\right]=\\ &\qquad=e^3\lim_{t\to0}\frac{1}{t}\left[e^{2t}-e^{-2t}\right]=\\ &\qquad=2e^3\lim_{t\to0}\left[\frac{e^{2t}-1}{2t}+\frac{e^{-2t}-1}{-2t}\right]=4e^3 \end{align}

2 ClaudeLeibovici Aug 15 2020 at 21:25

$$A=(1+3t+2t^2)^{\frac 1 t}\implies \log(A)=\frac 1 t \log(1+3t+2t^2)$$ $$ \log(1+3t+2t^2)=3 t-\frac{5 t^2}{2}+3 t^3-\frac{17 t^4}{4}+O\left(t^5\right)$$ $$ \log(A)=3-\frac{5 t}{2}+3 t^2-\frac{17 t^3}{4}+O\left(t^4\right)$$ $$A=e^{\log(A)}=e^3\left(1-\frac{5 t}{2}+\frac{49 t^2}{8}-\frac{689 t^3}{48}\right)+O\left(t^4\right) $$

$$B=(1+3t-2t^2)^{\frac 1 t}\implies \log(B)=\frac 1 t \log(1+3t-2t^2)$$ $$ \log(1+3t-2t^2)=3 t-\frac{13 t^2}{2}+15 t^3-\frac{161 t^4}{4}+O\left(t^5\right)$$ $$ \log(B)=3-\frac{13 t}{2}+15 t^2-\frac{161 t^3}{4}+O\left(t^4\right)$$ $$B=e^{\log(B)}=e^3\left(1-\frac{13 t}{2}+\frac{289 t^2}{8}-\frac{8809 t^3}{48} \right)+O\left(t^4\right) $$ $$A-B=4 e^3 t-30 e^3 t^2+\frac{1015 e^3 t^3}{6}+O\left(t^4\right)$$ $$\frac{A-B}t=4 e^3 -30 e^3 t+\frac{1015 e^3 t^2}{6}+O\left(t^3\right)$$menunjukkan batas dan bagaimana pendekatannya.

1 PeterForeman Aug 15 2020 at 19:11

Menggunakan Teorema Taylor pada logaritma natural dan eksponensial kita dapatkan bahwa\begin{align} (1+3t+2t^2)^{1/t} &=\exp{\left(\frac{\ln{(1+3t+2t^2)}}t\right)}\\ &=\exp{\left(\frac{(3t+2t^2)-(3t+2t^2)^2/2+o(t^2)}t\right)}\\ &=\exp{\left(3-\frac52t+o(t)\right)}\\ &=e^3\exp{\left(-\frac52t+o(t)\right)}\\ &=e^3\left(1-\frac52t+o(t)\right) \end{align}dan kami juga memiliki$$(1+3t-2t^2)^{1/t}=e^3\left(1-\frac{13}2t+o(t)\right)$$Jadi batasmu hanya\begin{align} \lim_{t\to0}\frac{e^3\left(1-\frac52t+o(t)\right)-e^3\left(1-\frac{13}2t+o(t)\right)}t &=\lim_{t\to0}\frac{4e^3t+o(t)}t\\ &=\lim_{t\to0}(4e^3+o(1))\\ &=\boxed{4e^3}\\ \end{align}