部分多項定理の総和
したがって、標準的な多項定理は次のように述べています。 $$ \sum_{i_1,\ldots,i_m} \binom{n}{i_1,\ldots,i_m}\cdot [i_1+\cdots +i_m=n]=m^n $$ ここで、合計は非負の数を超えており、 $[\cdot]$ に等しいインジケーター関数です $1$ 場合に限り $\cdot$ 満足して $0$そうでなければ。さて、私たちは言うことについて何か知っていますか($m$ そして $n$ の力であること $2$)、 $$ \sum_{i_1,\ldots,i_m} \binom{n}{i_1,\ldots,i_m}\cdot [i_1+\cdots +i_{m/2+1}\geq n/2]\cdot [i_1+\cdots +i_m=n]? $$ または $$ \sum_{i_1,\ldots,i_m} \binom{n}{i_1,\ldots,i_m}\cdot [i_1+\cdots +i_{m/2+2}\geq 3n/4]\cdot [i_1+\cdots +i_m=n]? $$ または一般的に $$ \sum_{i_1,\ldots,i_m} \binom{n}{i_1,\ldots,i_m}\cdot [i_1+\cdots +i_{m/2+k}\geq (2^k-1)n/2^k]\cdot [i_1+\cdots +i_m=n]? $$ 任意の場合 $k\in \{1,\ldots,m/2\}$?最終的には十分な大きさ$k$ これは、標準のマルチニミアル定理ステートメントに収束するだけです。
一般的に、私は次の量を理解または上限を探しています $$ \sum_{i_1,\ldots,i_m} \binom{n}{i_1,\ldots,i_m}\cdot \prod_{k=1}^{m/2}[i_1+\cdots +i_{m/2+k}\geq (2^k-1)n/2^k] $$ 任意のポインタ/ヘルプをいただければ幸いです!
回答
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{m\ \mbox{and}\ n}$あるにも数字が。次に、設定しましょう$m \equiv 2M$ そして $n = 2N$ どこ $\ds{M, N, \in \mathbb{N}_{\ \geq\ 0}}$。
上記の式の1つを調べてみましょう。つまり、最初の非標準のもの:\begin{align} &\bbox[5px,#ffd]{\sum_{k_{1},\ldots,k_{2m}}{2N \choose k_{1},\ldots,k_{2M}} \bracks{k_{1} + \cdots + k_{M + 1} \geq N}} \\[5mm] = & \sum_{s = N}^{\infty}\sum_{k_{1},\ldots,k_{2M}\ =\ 0}^{\infty}{\pars{2N}! \over k_{1}!,\ldots,k_{2M}!} \bracks{k_{1} + \cdots + k_{M + 1} = s} \\[5mm] = &\ \pars{2N}!\sum_{s = N}^{\infty}\sum_{k_{1},\ldots,k_{2M}\ =\ 0}^{\infty}{1 \over k_{1}!,\ldots,k_{2M}!} \bracks{z^{\large s}}z^{k_{1} + \cdots + k_{M + 1}} \\[5mm] = &\ \pars{2N}!\sum_{s = N}^{\infty}\bracks{z^{\large s}} \pars{\sum_{k = 0}^{\infty}{z^{k} \over k!}}^{M + 1} \pars{\sum_{q = 0}^{\infty}{1 \over q!}}^{M - 1} \\[5mm] = &\ \pars{2N}!\expo{M - 1}\sum_{s = N}^{\infty}\bracks{z^{\large s}} \expo{\pars{M + 1}z} \\[5mm] = &\ \bbx{\pars{2N}!\,\expo{M - 1} \sum_{s = N}^{\infty}{\pars{M + 1}^{s} \over s!}} \\ & \end{align}