Primzahlen vertreten durch $x^3-21xy^2+35y^3$.
Was wissen wir über die Primzahlen, die durch diese spezielle binäre kubische Form dargestellt werden? $x^3-21xy^2+35y^3$?
Ich weiß, dass meine Frage sehr kurz ist, aber ich habe keine Ahnung davon, und ich weiß nicht, wo ich die Antwort in der Literatur finden kann.
Ich suchte im Internet nach einem Programm, um zu überprüfen, ob es sich um eine binäre kubische Gleichung handelt $f(x, y)=n$hat eine Lösung oder nicht, aber ich habe nichts gefunden. Im Falle des Fehlens einer Antwort oder eines Verweises auf meine Frage wäre die Einführung eines Programms / einer Engine willkommen.
Lassen $\alpha$ sei eine Wurzel des Polynoms $x^3-21x-35=0$, und lass $K:=\mathbb{Q}(\alpha)$. Dann ist es leicht, das zu zeigen$$Norm(x+y\alpha+z\alpha^2)=x^3+35y^3+1225z^3-105xyz-21xy^2+441xz^2+42x^2z-735yz^2.$$ Diese binäre kubische Form ist gerecht $Norm(x+y\alpha)$.
Beachten Sie, dass die Diskriminante von $P(x)=x^3-21x-35$ ist $-(4\times(-21)^3+27\times(-35)^2)=3969=3^4\times7^2$, so diskriminierend von $K$ ist ein Quadrat, also eine zyklische kubische Galois-Erweiterung, also können wir daraus schließen $r_1=3$ und $r_2=0$. Mit dem Einheitensatz von Dirichlet können wir daraus schließen$\mathcal{O}_K^{\times}=\{\pm1\}\times\mathbb{Z}^2$. Beachten Sie auch, dass$P(x)=x^3-21x-35$ ist $7$-Eisenstein und $P(x-1)=x^3-3x^2+3x-1-21x+21-35=x^3-3x^2-18x-15$ ist $3$-Eisenstein; Daraus können wir schließen$\mathcal{O}_K=\mathbb{Z}[\alpha]=\mathbb{Z}\oplus\mathbb{Z}\alpha\oplus\mathbb{Z}\alpha^2$.
Ist die Antwort auf die folgende Frage positiv?
Annehmen, dass $Norm(a+b\alpha+c\alpha^2)=p$. Gibt es eine Einheit?$u \in \mathcal{O}_K^{\times}$ so dass $(a+b\alpha+c\alpha^2)\times u = A+B\alpha$ für einige ganze Zahlen $A, B$? Annehmen, dass$a+b\alpha+c\alpha^2$gegeben ist. Können wir eine geeignete Einheit finden, so dass wir nach der Multiplikation das Produkt als lineare Kombination von schreiben können?$1$, und $\alpha$? ohne Notwendigkeit von$\alpha^2$?
Antworten
Lassen $\alpha$ sei eine Wurzel von $x^3-21x+35=0$. Dann ist es einfach, Primzahlen der Form zu charakterisieren$$N(x + y\alpha + z\alpha^2) = x^3+35y^3+1225z^3-105xyz-21xy^2+441xz^2+42x^2z-735yz^2$$was in Will Jagys Antwort bereits entgangen war .
(Satz) Eine Primzahl$p\neq 3,7$ kann durch die obige kubische Form iff dargestellt werden $p\equiv \pm 1, \pm 8 \pmod{63}$.
Beweis des Satzes : Lassen Sie$K$sein Nummernfeld$x^3-21x+35$. Ich gehe von folgenden Tatsachen aus:$K$ hat Klassennummer $3$, Enthalten in $\mathbb{Q}(\zeta_{63})$.
Lassen $H$ sei das Hilbert-Klassenfeld von $K$, dann $H/\mathbb{Q}$ ist abelian des Grades $9$ ($H/\mathbb{Q}$ ist Galois und jede Gruppe von Ordnung $9$ ist abelisch).
- Anspruch: $H\subset \mathbb{Q}(\zeta_{63})$. Dies folgt aus einer allgemeinen (aber nicht bekannten) Tatsache von Zyklotomfeldern. Wir haben den folgenden Satz, der in der Antwort hier bewiesen ist : Wenn$F/\mathbb{Q}(\zeta_m)$ ist nicht verzweigt (bei endlichen Primzahlen) und $F/\mathbb{Q}$ also abelian $F=\mathbb{Q}(\zeta_m)$. weil$H/\mathbb{Q}$ ist abelisch und wendet diesen Satz auf an $F=H\mathbb{Q}(\zeta_{63})$ zeigt, dass $H\mathbb{Q}(\zeta_{63}) = \mathbb{Q}(\zeta_{63})$, so $H\subset \mathbb{Q}(\zeta_{63})$.
- Anspruch: $H$ entspricht $\{\pm 1,\pm 8\} \subset (\mathbb{Z}/63\mathbb{Z})^\times$. $H$ entspricht einer Untergruppe der Ordnung $4$ von $(\mathbb{Z}/63\mathbb{Z})^\times = C_6 \times C_6$Eine solche Untergruppe ist einzigartig und dies ist die einzige.
Schließlich $p\neq 3,7$ kann dargestellt werden als $N(x + y\alpha + z\alpha^2)$ iff $p$ spaltet sich in prinzipielle Ideale auf $K$, iff $p$ spaltet sich vollständig ein $H$, den Beweis zu vervollständigen.
Beschränken auf $z=0$der kubischen Form ist schwieriger und hat wahrscheinlich keine einfache Antwort. Wenn$\pi(n)$ bezeichnet dann die Primzählfunktion
$p$ | Nr. Von $p \equiv 1, 8, 55, 62 \pmod{63}$ | Nr. Von $p=x^3-21xy^2+35y^3$ |
---|---|---|
$\pi(p)\leq 3000$ | 326 | 61 |
$3001\leq \pi(p)\leq 6000$ | 344 | 42 |
$6001\leq \pi(p)\leq 9000$ | 326 | 32 |
Die Formgleichung $N(x+y\alpha)$ist eine Thue-Gleichung . Für jeden Einzelnen$p$gibt es einen Algorithmus, um zu überprüfen, ob $N(x+y\alpha) = p$hat integrale Lösung. Der folgende Magma- Code prüft die obige Tabelle auf kleine Werte$p$::
R<x> := PolynomialRing(Integers());
f := x^3 -21*x+35;
T := Thue(f);
list := {71, 127, 181, 197, 251, 307, 379, 433, 449, 503, 631, 701, 757, 811};
t := { n : n in list | Solutions(T, n) ne [] };
t
welche Ausgänge { 71, 127, 197, 307, 379, 449, 757 }
. Die vollständige Liste der Primzahlen$p$ mit $\pi(p)\leq 9000$ was geschrieben werden kann als $p=x^3-21xy^2+35y^3$ ist
{71,127,197,307,379,449,757,827,1259,1511,1637,1693,1889,2017,2339,2393,3221,3851,4283,4591,4789,5417,5419,5923,6047,6229,6553,6679,6733,7127,7253,7309,7687,7993,8387,8819,9883,10151,11593,11717,11719,12781,13033,14057,14923,15121,15749,16057,16829,17891,19081,19853,20593,21617,21673,22877,23633,24373,24697,24877,26641,28351,28547,28909,29287,30241,30493,31193,32381,32507,34469,35279,35281,35603,37799,37997,38611,38737,39439,40123,41887,42013,42407,44281,44729,45863,46187,47431,47881,49391,51659,51913,52289,53171,53857,54181,54559,55061,55763,55817,57457,57709,58897,60103,61487,62047,62189,62819,66403,67481,68041,70309,72269,72577,72883,77813,78569,79813,81017,81019,81703,82727,83719,84239,84869,86491,87443,87697,89767,90019,90271,92177,92357,92413,92861}
Keine "echte" Antwort, aber zu groß für einen Kommentar. Ich denke, dass Sie nach einer Lösung suchen, ohne einen Taschenrechner oder PC zu verwenden, aber vielleicht gibt dies einen Einblick. Ich habe nur eine schnelle Suche mit folgenden Grenzen durchgeführt:$-50\le x\le50$ und $-50\le y\le50$.
Ich habe einen Mathematica- Code geschrieben und ausgeführt:
In[1]:=Clear["Global`*"];
\[Alpha] = -50;
\[Beta] = 50;
ParallelTable[
If[TrueQ[PrimeQ[x^3 - 21*x*y^2 + 35*y^3] &&
x^3 - 21*x*y^2 + 35*y^3 >= 2], {x, y, x^3 - 21*x*y^2 + 35*y^3},
Nothing], {x, \[Alpha], \[Beta]}, {y, \[Alpha], \[Beta]}] //. {} ->
Nothing
Das Ausführen des Codes ergibt:
Out[1]={{{-48, 25, 1066283}, {-48, 49, 6427331}}, {{-47, -21,
7309}, {-47, -15, 127}, {-47, 11, 62189}, {-47, 15, 236377}, {-47,
21, 655579}, {-47, 26, 1178549}, {-47, 30, 1729477}}, {{-46, -17,
9883}, {-46, -15, 1889}, {-46, 27, 1295783}, {-46, 33,
2212433}}, {{-44, -15, 4591}, {-44, 15, 240841}, {-44, 17,
353807}, {-44, 23, 829457}, {-44, 35, 2547341}}, {{-43, -20,
1693}, {-43, 15, 241793}, {-43, 34, 2340001}, {-43, 40,
3605293}, {-43, 45, 4938443}}, {{-41, -18, 5923}, {-41, -15,
6679}, {-41, 17, 351863}, {-41, 23, 812393}, {-41, 45,
4863979}, {-41, 48, 5785543}}, {{-39, -17, 5417}, {-39, 25,
999431}, {-39, 32, 1926217}, {-39, 37, 2834747}, {-39, 43,
4237757}}, {{-38, -15, 6553}, {-38, 9, 35281}, {-38, 41,
3698801}}, {{-37, -15, 6047}, {-37, 9, 37799}, {-37, 10,
62047}, {-37, 16, 291619}, {-37, 21, 616139}, {-37, 39,
3207329}, {-37, 40, 3432547}}, {{-36, 7, 2393}, {-36, 13,
158003}, {-36, 35, 2380069}, {-36, 37, 2761163}, {-36, 43,
4133933}}, {{-34, -15, 3221}, {-34, 7, 7687}, {-34, 27,
1170107}, {-34, 37, 2711017}, {-34, 43, 4063627}}, {{-33, -14,
3851}, {-33, 14, 195931}, {-33, 16, 284831}, {-33, 26,
1047691}, {-33, 34, 2140811}, {-33, 35, 2313613}, {-33, 40,
3312863}, {-33, 49, 5745671}}, {{-32, -15, 307}}, {{-31, 10,
70309}, {-31, 12, 124433}, {-31, 15, 234809}, {-31, 22,
657973}, {-31, 25, 923959}, {-31, 33, 1936943}}, {{-29, -13,
1637}, {-29, -10, 1511}, {-29, 8, 32507}, {-29, 12, 123787}, {-29,
15, 230761}, {-29, 17, 323567}, {-29, 20, 499211}, {-29, 23,
723617}, {-29, 27, 1108477}, {-29, 33, 1896607}, {-29, 38,
2775527}, {-29, 45, 4398211}, {-29, 50, 5873111}}, {{-27, -11,
2339}, {-27, -10, 2017}, {-27, 29, 1310779}, {-27, 34,
2011409}, {-27, 41, 3345679}, {-27, 46, 4586849}, {-27, 50,
5772817}}, {{-26, 5, 449}, {-26, 27, 1069363}, {-26, 33,
1834813}, {-26, 35, 2151899}, {-26, 47, 4822343}}, {{-24, 7,
22877}, {-24, 23, 678637}, {-24, 25, 848051}, {-24, 43,
3700817}, {-24, 47, 4733317}}, {{-23, 5, 4283}, {-23, 6,
12781}, {-23, 11, 92861}, {-23, 21, 524971}, {-23, 26,
929501}, {-23, 29, 1247651}, {-23, 30, 1367533}, {-23, 39,
2798641}, {-23, 50, 5570333}}, {{-22, -9, 1259}, {-22, 9,
52289}, {-22, 15, 211427}, {-22, 19, 396199}, {-22, 21,
517229}, {-22, 25, 824977}, {-22, 45, 4114277}}, {{-19, -8,
757}, {-19, 7, 24697}, {-19, 10, 68041}, {-19, 18, 326537}, {-19,
22, 558937}, {-19, 25, 789391}, {-19, 28, 1074277}, {-19, 33,
1685447}, {-19, 42, 3290057}, {-19, 43, 3513637}, {-19, 48,
4783157}}, {{-18, 5, 7993}, {-18, 11, 86491}, {-18, 41,
3041821}}, {{-17, -6, 379}, {-17, 5, 8387}, {-17, 11, 84869}, {-17,
21, 476659}, {-17, 24, 684559}, {-17, 30, 1261387}, {-17, 35,
1933037}, {-17, 36, 2090719}, {-17, 44, 3667679}}, {{-16, 7,
24373}, {-16, 33, 1619603}}, {{-13, -6, 71}, {-13, 10,
60103}, {-13, 16, 211051}, {-13, 25, 715303}, {-13, 31,
1302841}, {-13, 34, 1689031}, {-13, 36, 1984571}}, {{-12, -5,
197}, {-12, 19, 329309}, {-12, 31, 1283129}}, {{-11, 3,
1693}, {-11, 5, 8819}, {-11, 12, 92413}, {-11, 15, 168769}, {-11,
20, 371069}, {-11, 30, 1151569}, {-11, 35, 1782269}, {-11, 38,
2252753}, {-11, 42, 2999233}, {-11, 47, 4142753}}, {{-9, 2,
307}, {-9, 8, 29287}, {-9, 10, 53171}, {-9, 13, 108107}, {-9, 25,
664271}, {-9, 32, 1339687}, {-9, 35, 1731421}, {-9, 43,
3131477}, {-9, 50, 4846771}}, {{-8, 9, 38611}, {-8, 15,
155413}, {-8, 29, 994391}, {-8, 45, 3529063}}, {{-6, 5, 7309}, {-6,
13, 97973}, {-6, 25, 625409}, {-6, 43, 3015503}, {-6, 47,
3911923}}, {{-4, 3, 1637}, {-4, 7, 16057}, {-4, 27, 750077}, {-4,
33, 1349207}}, {{-3, 1, 71}, {-3, 4, 3221}, {-3, 5, 5923}, {-3, 11,
54181}, {-3, 19, 262781}, {-3, 40, 2340773}, {-3, 44,
3103381}, {-3, 46, 3540041}, {-3, 49, 4268951}}, {{-2, 5,
5417}, {-2, 9, 28909}, {-2, 11, 51659}}, {{-1, 7, 13033}, {-1, 15,
122849}, {-1, 18, 210923}, {-1, 22, 382843}, {-1, 27, 704213}, {-1,
30, 963899}, {-1, 40, 2273599}, {-1, 43, 2821573}}, {{1, 2,
197}, {1, 3, 757}, {1, 5, 3851}, {1, 12, 57457}, {1, 17,
165887}, {1, 23, 414737}, {1, 35, 1474901}}, {{2, 19, 224911}, {2,
21, 305621}, {2, 25, 520633}}, {{3, 4, 1259}, {3, 14, 83719}, {3,
20, 254827}, {3, 26, 572599}, {3, 29, 800659}, {3, 34,
1302839}, {3, 40, 2139227}, {3, 44, 2859499}}, {{4, 5, 2339}, {4,
15, 99289}, {4, 17, 147743}, {4, 27, 627733}, {4, 33, 1166383}, {4,
45, 3019339}}, {{6, 7, 6047}, {6, 13, 55817}, {6, 17, 135757}, {6,
23, 359407}, {6, 35, 1346491}}, {{8, 1, 379}, {8, 45,
2849687}, {8, 49, 3714859}}, {{9, 5, 379}, {9, 8, 6553}, {9, 10,
16829}, {9, 20, 205129}, {9, 22, 281933}, {9, 23, 326593}, {9, 43,
2434013}}, {{11, -2, 127}, {11, 3, 197}, {11, 7, 2017}, {11, 12,
28547}, {11, 15, 67481}, {11, 25, 403831}, {11, 45,
2722931}}, {{12, 1, 1511}, {12, 25, 391103}, {12, 35,
1193653}, {12, 49, 3514391}}, {{13, -1, 1889}, {13, 11,
15749}, {13, 14, 44729}, {13, 15, 58897}, {13, 24, 328789}, {13,
30, 701497}, {13, 35, 1168397}, {13, 36, 1281349}, {13, 45,
2638747}}, {{16, -3, 127}, {16, 3, 2017}, {16, 5, 71}, {16, 27,
448057}, {16, 33, 895987}}, {{17, 1, 4591}, {17, 9, 1511}, {17, 19,
116101}, {17, 24, 283121}, {17, 31, 704521}, {17, 39,
1538081}, {17, 40, 1673713}, {17, 46, 2656261}}, {{18, -1,
5419}, {18, 5, 757}, {18, 11, 6679}, {18, 29, 541549}}, {{19, 5,
1259}, {19, 12, 9883}, {19, 18, 81703}, {19, 30, 592759}, {19, 33,
830143}, {19, 35, 1018709}, {19, 45, 2388259}}, {{22, -1,
10151}, {22, 21, 131041}, {22, 29, 475721}, {22, 41,
1646261}}, {{23, 1, 11719}, {23, 4, 6679}, {23, 6, 2339}, {23, 15,
21617}, {23, 39, 1353689}, {23, 45, 2223467}}, {{24, 17,
40123}, {24, 23, 173053}, {24, 35, 897049}, {24, 37,
1096703}}, {{26, -3, 11717}, {26, 27, 308447}}, {{27, -1,
19081}, {27, 5, 9883}, {27, 14, 4591}, {27, 16, 17891}, {27, 19,
55061}, {27, 20, 72883}, {27, 25, 212183}, {27, 31, 517481}, {27,
35, 825733}}, {{29, -5, 4789}, {29, -2, 21673}, {29, 3,
19853}, {29, 7, 6553}, {29, 18, 31193}, {29, 25, 190639}, {29, 27,
269333}}, {{31, 3, 24877}, {31, 5, 17891}, {31, 8, 6047}, {31, 20,
49391}, {31, 30, 388891}, {31, 32, 510047}, {31, 33, 578647}, {31,
45, 1900891}}, {{32, -5, 11593}, {32, 9, 3851}, {32, 19,
30241}, {32, 31, 429661}}, {{33, 1, 35279}, {33, 10, 1637}, {33,
16, 1889}, {33, 20, 38737}, {33, 29, 306739}, {33, 34,
610469}, {33, 35, 687637}, {33, 46, 1976309}, {33, 49,
2489759}, {33, 50, 2678437}}, {{34, 23, 87443}, {34, 33,
519553}, {34, 35, 665279}, {34, 45, 1782829}}, {{36, 7,
21617}, {36, 17, 127}, {36, 23, 72577}, {36, 37, 784547}, {36, 43,
1431557}}, {{37, -6, 15121}, {37, 5, 35603}, {37, 6, 30241}, {37,
11, 3221}, {37, 20, 19853}, {37, 30, 296353}, {37, 41,
1156751}}, {{38, 9, 15749}, {38, 31, 330679}}, {{39, -5,
34469}, {39, -2, 55763}, {39, 7, 31193}, {39, 20, 11719}, {39, 22,
35603}, {39, 23, 51913}, {39, 28, 185543}}, {{41, 7, 38737}, {41,
12, 5417}, {41, 13, 307}, {41, 22, 24877}, {41, 43,
1259677}}, {{43, -6, 39439}, {43, -4, 62819}, {43, -1, 78569}, {43,
6, 54559}, {43, 11, 16829}, {43, 21, 5419}, {43, 26, 84239}, {43,
29, 173699}, {43, 39, 782209}, {43, 44, 1312739}}, {{44, -5,
57709}, {44, 3, 77813}, {44, 7, 51913}, {44, 13, 5923}, {44, 25,
54559}, {44, 27, 100493}, {44, 37, 593083}, {44, 45,
1403459}}, {{46, -7, 37997}, {46, -3, 87697}, {46, 33,
303157}, {46, 35, 414611}}, {{47, 1, 102871}, {47, 4, 90271}, {47,
9, 49391}, {47, 10, 40123}, {47, 39, 678761}, {47, 40,
764623}}, {{48, -5, 81017}, {48, 1, 109619}, {48, 5, 89767}, {48,
35, 376417}, {48, 41, 828379}}}
Also mit den Grenzen $-50\le x\le50$ und $-50\le y\le50$ wir finden $402$Lösungen. Um herauszufinden, dass ich verwendet habe:
In[2]:=Clear["Global`*"];
\[Alpha] = -50;
\[Beta] = 50;
f = Total@*Map[Length];
f[ParallelTable[
If[TrueQ[
PrimeQ[x^3 - 21*x*y^2 + 35*y^3] &&
x^3 - 21*x*y^2 + 35*y^3 >= 2], {x, y, x^3 - 21*x*y^2 + 35*y^3},
Nothing], {x, \[Alpha], \[Beta]}, {y, \[Alpha], \[Beta]}] //. {} \
-> Nothing]
Out[2]=402
Wenn wir die Grenzen erweitern auf $-10^3\le x\le10^3$ und $-10^3\le y\le10^3$ wir finden $92522$Lösungen. Wenn wir die Grenzen noch einmal erweitern, auf$-10^4\le x\le10^4$ und $-10^4\le y\le10^4$ wir finden $6950603$ Lösungen.
Die Diskriminante von $x^3 - 21 x + 35$ist ein Quadrat, viele Dinge fallen aus. Die Primzahlen, die durch die von Ihnen angegebene vollständige Normform dargestellt werden, sind Primzahlen, die es sind$$ 1, 5, 8, 11, 23, 25, \pmod{63} $$ $$ 62, 58, 55, 52, 40, 38, \pmod{63} $$
Es gibt mehr Einschränkungen, die anfangs nicht offensichtlich sind, es handelt sich um eine Untergruppe der Reste $$ \color{red}{ 1, 8, 55, 62 \pmod{63} } $$ $$x^3+35y^3+1225z^3-105xyz-21xy^2+441xz^2+42x^2z-735yz^2.$$
Mit welchen Einschränkungen bekommen wir $z=0$ sind jedermanns Vermutung.
Beachten Sie, dass $x^3 - 21 x + 35$ und $x^3 - 21 x + 28$ Geben Sie verschiedene Felder an
