Bagaimana melakukan pendekatan $\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}$?

Aug 21 2020

@User menyebutkan dalam komentar itu

$$\sum _{n=1}^{\infty } \frac{16^n}{n^3 \binom{2 n}{n}^2}=8\pi\text{G}-14 \zeta (3)\tag1$$

$$\small{\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi \Im(\text{Li}_3(1+i))+64 \text{Li}_4\left(\frac{1}{2}\right)-233 \zeta(4)-40 \ln ^2(2)\zeta(2)+\frac{8}{3}\ln ^4(2)}\tag2$$

Saya bisa membuktikan $(1)$ tetapi mengalami kesulitan untuk membuktikannya $(2)$. Ada ide?

Saya akan menunjukkan bukti saya $(1)$ berharap itu membantu Anda membuktikan $(2)$:

Kami menunjukkan dalam pertanyaan ini bahwa

$$\sum_{n=1}^\infty\frac{4^ny^n}{n^2{2n\choose n}}=2\int_0^y \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}dx$$

kalikan kedua sisi dengan $\frac{1}{y\sqrt{1-y}}$ kemudian $\int_0^1$ dengan hormat $y$ dan gunakan $\int_0^1\frac{y^{n-1}}{\sqrt{1-y}}dy=\frac{4^n}{n{2n\choose n}}$ kami dapatkan

$$\sum _{n=1}^{\infty } \frac{16^n}{n^3 \binom{2 n}{n}^2}=2\int_0^1\int_0^y \frac{\arcsin \sqrt{x}}{y\sqrt{x}\sqrt{1-x}\sqrt{1-y}}dxdy$$

$$=2\int_0^1\frac{\arcsin\sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\int_x^1\frac{dy}{y\sqrt{1-y}}\right)dx$$

$$=2\int_0^1\frac{\arcsin\sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(2\ln(1+\sqrt{1-x})-\ln x\right)dx$$

$$\overset{\sqrt{x}=\sin \theta}{=}8\int_0^{\pi/2}x\ln(1+\cos x)dx-8\int_0^{\pi/2}x\ln(\sin x)dx$$

$$=8\int_0^{\pi/2}x\ln(2\cos^2\frac x2)dx-8\int_0^{\pi/2}x\ln(\sin x)dx$$

$$=32\int_0^{\pi/4}x\ln(2\cos^2x)dx-8\int_0^{\pi/2}x\ln(\sin x)dx$$

$$=32\underbrace{\int_0^{\pi/4}x\ln(2)dx}_{\frac3{16}\ln(2)\zeta(2)}+64\underbrace{\int_0^{\pi/4}x\ln(\cos x)dx}_{\frac{\pi}{8}\text{G}-\frac3{16}\ln(2)\zeta(2)-\frac{21}{128}\zeta(3)}-8\underbrace{\int_0^{\pi/2}x\ln(\sin x)dx}_{\frac7{16}\zeta(3)-\frac34\ln(2)\zeta(2)}$$

$$=8\pi\text{G}-14 \zeta (3)$$

Dua integral terakhir mengikuti dari penggunaan deret Fourier $\ln(\cos x)$ dan $\ln(\sin x)$.

Semua pendekatan dihargai. Terima kasih.


Tambahan: Berikut adalah cara yang lebih mudah untuk membuktikannya $(1)$:

Kita punya

$$\arcsin^2(x)=\frac12\sum_{n=1}^\infty\frac{(2x)^{2n}}{n^2{2n\choose n}}$$

atau

$$\sum_{n=1}^\infty\frac{4^nx^n}{n^2{2n\choose n}}=2\arcsin^2(\sqrt{x})$$

Bagilah kedua sisi dengan $x\sqrt{1-x}$ kemudian $\int_0^1$ dan gunakan $\int_0^1\frac{x^{n-1}}{\sqrt{1-x}}dx=\frac{4^n}{n{2n\choose n}}$ kita punya

$$\sum_{n=1}^\infty\frac{16^n}{n^3{2n\choose n}^2}=2\int_0^1\frac{\arcsin^2(\sqrt{x})}{x\sqrt{1-x}}dx$$

$$\overset{\sqrt{x}=\sin x}{=}4\int_0^{\pi/2}x^2 \csc(x)dx$$

$$\overset{IBP}{=}-8\int_0^{\pi/4} x\ln(\tan\frac x2)dx=8\pi\text{G}-14\zeta(3)$$

dimana hasil terakhir mengikuti dari deret Fourier $\ln(\tan\frac x2)$.

Jawaban

7 user97357329 Aug 22 2020 at 06:01

Terlalu panjang untuk berkomentar (dari Cornel )

Nah, alat-alat dasar yang disajikan oleh OP sudah cukup untuk segera mendapatkan pengurangan ke integral tunggal dengan integrasi sederhana berdasarkan bagian dan perubahan urutan integrasi. Jadi, deretnya sama dengan$$\sum _{n=1}^{\infty } \frac{16^n}{\displaystyle n^4 \binom{2 n}{n}^2}=\int _0^1\frac{1}{z\sqrt{1-z}}\left(\int _0^z\frac{1}{y}\left(\int _0^y\frac{2 \arcsin(\sqrt{x})}{\sqrt{x (1-x)}}\textrm{d}x \right)\textrm{d}y \right)\textrm{d}z$$ $$=-32\int_0^1 \frac{\arctan^2(x)\log (x)}{x} \textrm{d}x-\frac{64}{3} \int_0^1 \arctan^3(x) \textrm{d}x-\frac{64}{3} \int_0^1 \arctan^3(x)\log (x)\textrm{d}x,$$

dan hasil yang diinginkan mengikuti dari penggunaan itu

$$\int_0^{1} \frac{\arctan(x)^2\log (x)}{x} \textrm{d}x$$ $$=\operatorname{Li}_4\left(\frac{1}{2}\right)+\frac{1}{24}\log ^4(2)+\frac{7}{8}\log (2)\zeta (3) -\frac{151 }{11520}\pi ^4-\frac{1}{24}\log ^2(2)\pi ^2,$$yang membutuhkan beberapa teknik khusus. Misalnya, pengguna Song telah memposting di situs solusi di mana integrasi kontur dieksploitasi secara cerdik, tetapi juga cara pintar lainnya dimungkinkan.

Kemudian,

$$\int_0^1 \arctan^3(x) \textrm{d}x=\frac{\pi ^3}{64}+\frac{3}{32} \pi ^2 \log (2)-\frac{3 }{4}\pi G+\frac{63 }{64}\zeta(3),$$

yang sepele (perubahan variabel dan deret Fourier).

Lanjut,

$$ \int_0^1 \arctan^3(x)\log (x)\textrm{d}x$$ $$=\frac{3 }{4}\pi G-\frac{3}{32} \log (2)\pi ^2+\frac{3}{8} \log ^2(2) \pi ^2-\frac{\pi ^3}{64}+\frac{361 }{2560}\pi ^4-\frac{63 }{64}\zeta (3)-\frac{21}{16} \log (2)\zeta (3) -\frac{3}{16}\log ^4(2)-3 \pi \Im\{\text{Li}_3(1+i)\}-\frac{9 }{2}\operatorname{Li}_4\left(\frac{1}{2}\right),$$yang menggabungkan deret Fourier dan metode Variabel Acak dalam posting ini Mencari bentuk tertutup dari$\int_0^{\pi/4}\ln^2(\sin x)\,dx$ dan $\int_0^{\pi/4}\ln^2(\cos x)\,dx$. Seri fourier dalam buku, (Almost) Impossible Integrals, Sums, and Series , halaman$243$, eq. $3.281$, juga dapat ditemukan sangat berguna setelah transformasi integral menjadi trigonometri. Selain itu, baik untuk mengetahui bahwa alih-alih cara Variabel Acak di mana perlu kita dapat mencoba menyesuaikan dan menggunakan strategi dalam posting ini,https://math.stackexchange.com/q/3798026.

Catatan pertama: Dengan cara serupa, seseorang dapat menghitung versinya,$$\displaystyle \sum _{n=1}^{\infty } \frac{16^n}{\displaystyle n^5 \binom{2 n}{n}^2}.$$

Catatan kedua: Integral yang paling maju dan rangkaian yang terbang di sekitar situs dalam periode waktu ini dapat dengan mudah dikelola sebagian besar dengan teknik sederhana. Misalnya, seseorang dapat menghitung rangkaian bobot harmonik nontrivial tingkat lanjut,$8$, $9$, $10$, $11$, $12$dengan hanya menggabungkan dan menggunakan identitas dasar dengan bilangan harmonik, tidak diperlukan lanjutan . Tentunya, metode lanjutan diterima dan dihargai juga.

3 AliShadhar Aug 26 2020 at 01:30

Sejak

$$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n\choose n}}$$

kita bisa menulis

$$\sum_{n=1}^\infty\frac{4^nx^{n}}{n{2n\choose n}}=\frac{2\sqrt{x}\arcsin \sqrt{x}}{\sqrt{1-x}}$$

Kalikan kedua sisi dengan $-\frac{\ln x}{x}$ kemudian $\int_0^y$ dan menggunakan fakta itu $\int_0^y - x^{n-1}\ln xdx=\frac{1}{n^2}y^n-\frac{\ln y}{n}y^n$

$$\sum_{n=1}^\infty\frac{4^ny^n}{n^3{2n\choose n}}-\ln y\sum_{n=1}^\infty\frac{4^ny^n}{n^2{2n\choose n}}=-\int_0^y \frac{2\ln x\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}dx$$

Selanjutnya, kalikan kedua sisi dengan $\frac{1}{y\sqrt{1-y}}$ kemudian $\int_0^1$ kita mendapatkan

$$\sum_{n=1}^\infty\frac{4^n}{n^3{2n\choose n}}\left(\int_0^1\frac{y^{n-1}}{\sqrt{1-y}}dy\right)-\int_0^y\frac{\ln y}{y\sqrt{1-y}}\left(\sum_{n=1}^\infty\frac{(2\sqrt{y})^{2n}}{n^2{2n\choose n}}\right)dx$$ $$=-\int_0^1\int_0^y \frac{2\ln x\arcsin \sqrt{x}}{y\sqrt{x}\sqrt{1-x}\sqrt{1-y}}dxdy=-\int_0^1 \frac{2\ln x\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\int_x^1\frac{dy}{y\sqrt{1-y}}\right)dx$$

$$=-\int_0^1 \frac{2\ln x\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(2\ln(1+\sqrt{1-x})-\ln x\right)dx$$

$$\overset{\sqrt{x}=\sin\theta}{=}16\int_0^{\pi/2}x\ln(\sin x)\ln\left(\frac{\sin x}{1+\cos x}\right)dx$$

$$=16\int_0^{\pi/2}x\ln(\sin x)\ln\left(\tan(\frac x2)\right)dx$$

$$\overset{x\to 2x}{=}64\int_0^{\pi/4}x\ln(\sin(2x))\ln\left(\tan x\right)dx$$

$$=64\int_0^{\pi/4}x[\ln(2)+\ln(\sin x)+\ln(\cos x)][\ln(\sin x)-\ln(\cos x)]dx$$

$$=64\ln(2)\int_0^{\pi/4}x\ln(\tan x)dx+64\int_0^{\pi/4}x\ln^2(\sin x)dx-64\int_0^{\pi/4}x\ln^2(\cos x)dx$$

Untuk LHS, gunakan $\int_0^1\frac{y^{n-1}}{\sqrt{1-y}}dy=\frac{4^n}{n{2n\choose n}}$ dan $\sum_{n=1}^\infty\frac{(2\sqrt{y})^{2n}}{n^2{2n\choose n}}=2\arcsin^2(\sqrt{y})$ kita mendapatkan

$$\text{LHS}=\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}-2\int_0^1\frac{\ln y\arcsin^2(\sqrt{y})}{y\sqrt{1-y}}dy$$ $$\overset{\sqrt{y}=\sin \theta}{=}\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}-8\int_0^{\pi/2} x^2\csc x\ln(\sin x)dx$$

Karena itu

$$\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}=64\ln(2)\int_0^{\pi/4}x\ln(\tan x)dx-64\int_0^{\pi/4}x\ln^2(\cos x)dx$$ $$+64\int_0^{\pi/4}x\ln^2(\sin x)dx+8\int_0^{\pi/2} x^2\csc x\ln(\sin x)dx\tag1$$


Integral pertama dapat dilakukan melalui deret Fourier:

$$\int_0^{\pi/4} x\ln(\tan x)dx=\frac{7}{16}\zeta(3)-\frac{\pi}{4}\text{G}\tag2$$

Integral kedua:

$$\int_0^{\pi/4}x\ln^2(\cos x)dx=\int_0^{\pi/2}x\ln^2(\cos x)dx-\underbrace{\int_{\pi/4}^{\pi/2}x\ln^2(\cos x)dx}_{x\to \pi/2-x}$$

$$=\int_0^{\pi/2}x\ln^2(\cos x)dx-\int_{\pi/4}^{\pi/2}(\frac{\pi}{2}-x)\ln^2(\sin x)dx$$

$$=\int_0^{\pi/2}x\ln^2(\cos x)dx-\frac{\pi}{2}\int_0^{\pi/4}\ln^2(\sin x)dx+\int_0^{\pi/4}x\ln^2(\sin x)dx$$

Memasukkan hasil ini bersama dengan $(2)$ di $(1)$, integral $\int_0^{\pi/4}x\ln^2(\sin x)dx$ dengan baik membatalkan mendapatkan:

$$\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}=28\ln(2)\zeta(3)-16\pi\ln(2)\text{G}-64\int_0^{\pi/2}x\ln^2(\cos x)dx$$ $$+32\pi\int_0^{\pi/4}\ln^2(\sin x)dx+8\int_0^{\pi/2} x^2\csc x\ln(\sin x)dx$$

Mari memanipulasi integral pertama menggunakan trik yang sama $x\to \pi/2-x$:

$$\int_0^{\pi/2}x\ln^2(\cos x)dx=\int_0^{\pi/2}(\frac{\pi}{2}-x)\ln^2(\sin x)dx$$

$$=\frac{\pi}{2}\int_0^{\pi/2}\ln^2(\cos x)dx-\int_0^{\pi/2}x\ln^2(\sin x)dx$$

Dengan fungsi Beta yang kami miliki

$$\frac{\pi}{2}\int_0^{\pi/2}\ln^2(\cos x)dx=\frac{15}{8}\zeta(4)+\frac32\ln^2(2)\zeta(2)$$

dan intinya adalah

$$\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}=28\ln(2)\zeta(3)-16\pi\ln(2)\text{G}-120\zeta(4)-96\ln^2(2)\zeta(2)$$ $$+64\underbrace{\int_0^{\pi/2}x\ln^2(\sin x)dx}_{\mathcal{\Large{I_1}}}+32\pi\underbrace{\int_0^{\pi/4}\ln^2(\sin x)dx}_{\mathcal{\Large{I_2}}}+8\underbrace{\int_0^{\pi/2}x\csc x\ln(\sin x)dx}_{\mathcal{\Large{I_3}}}$$

$\mathcal{I}_1$dihitung di sini :

$$\int_0^{\pi/2} x\ln^2(\sin x)\textrm{d}x=\frac{1}{2}\ln^2(2)\zeta(2)-\frac{19}{32}\zeta(4)+\frac{1}{24}\ln^4(2)+\operatorname{Li}_4\left(\frac{1}{2}\right)$$

$\mathcal{I}_2$dihitung di sini

$$\int_{0}^{\pi /4} \ln^{2}(\sin x) \ dx = \frac{\pi^{3}}{192} + G\frac{ \ln(2)}{2} + \frac{3 \pi}{16} \ln^{2}(2) + \text{Im} \ \text{Li}_{3}(1+i).$$

$\mathcal{I}_3$dihitung di sini

$$\int_0^{\pi/2} \frac{x^2 \ln(\sin x)}{\sin (x)} dx=-4 \pi \Im\left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}-\frac{7}{2} \zeta (3) \ln (2)+\frac{135}{16}\zeta(4)+\frac{3}{4} \zeta(2) \ln ^2(2)$$ $$=4\pi\Im\{\text{Li}_3(1+i)\}-\frac{45}{4}\zeta(4)-\frac72\ln(2)\zeta(3)-\frac32\ln^2(2)\zeta(2)$$

Hasil terakhir mengikuti dari penggunaan

$$\Im\left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}=\frac{7\pi^3}{128}+\frac{3\pi}{32}\ln^2(2)-\Im\{\text{Li}_3(1+i)\}$$

Mengumpulkan tiga integral yang akhirnya kita dapatkan

$$\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi \Im\{\text{Li}_3(1+i)\}+64 \text{Li}_4\left(\frac{1}{2}\right)-233 \zeta(4)-40 \ln ^2(2)\zeta(2)+\frac{8}{3}\ln ^4(2)$$


Terima kasih kepada Cornel untuk petunjuknya$x\to \pi/2-x$ yang menyederhanakan $\int_0^{\pi/2}x\ln^2(\cos x)dx$ untuk integral yang diketahui.