Bagaimana saya bisa membuktikan $\int_{0}^{1} \frac {x-1}{\log(x) (1+x^3)}dx=\frac {\log3}{2}$
Pertanyaan: - Buktikan$$\int_0^1 \frac {x-1}{\log(x) (1+x^3)} \, dx = \frac {\log(3)}{2}$$
Saya melihat masalah ini sebagai komentar di video youtube beberapa jam yang lalu tetapi saya tidak tahu bagaimana membuktikannya karena integrasi dengan bagian tidak berfungsi di sini. Juga saya tidak dapat menemukan subsitusi yang tepat yang akan menyederhanakan integral.
Bisakah seseorang menyarankan saya beberapa petunjuk?
Jawaban
Catat itu $\int_0^1 x^s\,ds=\frac{x-1}{\log(x)}$. Lalu, kami punya
$$\int_0^1\frac{x-1}{\log(x)(x^3+1)}\,dx=\int_0^1\int_0^1 \frac{x^s}{(x^3+1)}\,ds\,dx$$
Sekarang kami menerapkan Teorema Fubini untuk menukar urutan integrasi untuk mengungkapkan
$$\int_0^1\frac{x-1}{\log(x)(x^3+1)}\,dx=\int_0^1\int_0^1 \frac{x^s}{(x^3+1)}\,dx\,ds$$
Selanjutnya, kami memperluas penyebut dalam deret geometris untuk menemukannya
$$\begin{align} \int_0^1\frac{x-1}{\log(x)(x^3+1)}\,dx&=\sum_{n=0}^\infty (-1)^n\int_0^1\int_0^1 x^{s+3n}\,dx\,ds\\\\ &=\sum_{n=0}^\infty (-1)^n \log\left(\frac{3n+2}{3n+1}\right) \end{align}$$
Bisakah kamu menyelesaikannya sekarang?
BONUS:
Untuk mengevaluasi rangkaian terakhir kami menggunakan fungsi digamma, hubungannya dengan fungsi Gamma, dan rumus refleksi Euler. Melanjutkan, kami menulis
$$\begin{align} \sum_{n=0}^\infty (-1)^n\log\left(\frac{3n+2}{3n+1}\right)&=\int_0^1 \sum_{n=0}^\infty (-1)^n \frac1{s+3n+1}\,ds\\\\ &=\int_0^1 \sum_{n=0}^\infty\left(\frac1{6n+s+1}-\frac1{6n+s+4}\right)\,ds\\\\ &=\frac16\int_0^1\left(\psi((s+4)/6)-\psi((s+1)/6)\right)\,ds\\\\ &=\log\left(\frac{\Gamma(5/6)\Gamma(1/6)}{\Gamma(2/3)\Gamma(1/3)}\right)\\\\ &=\log\left(\frac{\sin(2\pi/3)}{\sin(5\pi/6)}\right)\\\\ &=\log(\sqrt 3) \end{align}$$
seperti yang diharapkan!
Catatan
$$I=\int_{0}^{1} \frac {x-1}{\ln x (1+x^3)}dx \overset{x\to\frac1x}= \frac12\int_{0}^{\infty} \frac {x-1}{\ln x (1+x^3)}dx$$
Membiarkan $J(a) = \int_{0}^{\infty} \frac {x^a-1}{\ln x (1+x^3)}dx$. Kemudian$J’(a) = \int_{0}^{\infty} \frac {x^a}{1+x^3}dx=\frac\pi3\csc\frac{\pi(a+1)}3 $. Jadi,
$$I=\frac12 J(1) =\frac12\int_0^1J’(a)da=\frac\pi6\int_0^1\csc\frac{\pi(a+1)}3da=\frac{\ln3}2 $$
Sebagai alternatif untuk pendekatan Mark Viola , gunakan deret geometris untuk melihat$$\small\int_0^1\frac{x-1}{x^3+1}\frac{{\rm d}x}{\log x}=\sum_{n\ge0}(-1)^n\int_0^1\frac{x^{3n+1}-x^{3n}}{\log x}\,{\rm d}x=\sum_{n\ge0}(-1)^{n+1}\int_0^\infty\frac{e^{-(3n+2)x}-e^{-(3n+1)x}}x\,{\rm d}x$$Yang terakhir adalah integral Frullani dan mengevaluasi sebagai$$\int_0^\infty\frac{e^{-(3n+2)x}-e^{-(3n+1)x}}x\,{\rm d}x=-\log\left(\frac{3n+2}{3n+1}\right)$$ dan dengan demikian tiba di $$\int_0^1\frac{x-1}{x^3+1}\frac{{\rm d}x}{\log x}=\sum_{n\ge0}(-1)^n\log\left(\frac{3n+2}{3n+1}\right)$$ demikian juga.
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1}{x - 1 \over \ln\pars{x}\pars{1 + x^{3}}} \,\dd x} = \int_{0}^{1}{1 \over 1 + x^{3}}\ \overbrace{\int_{0}^{1}x^{t}\,\dd t}^{\ds{x - 1 \over \ln\pars{x}}}\ \dd x \\[5mm] = &\ \int_{0}^{1}\int_{0}^{1}{x^{t} - x^{t + 3} \over 1 - x^{6}}\,\dd x\,\dd t = {1 \over 6} \int_{0}^{1}\int_{0}^{1}{x^{t/6 - 5/6} - x^{t/6 - 1/3} \over 1 - x} \,\dd x\,\dd t \\[5mm] = &\ {1 \over 6}\int_{0}^{1}\pars{\int_{0}^{1}{1 - x^{t/6 - 1/3} \over 1 - x} \,\dd x - \int_{0}^{1}{1 - x^{t/6 - 5/6} \over 1 - x} \,\dd x}\,\dd t \\[5mm] = &\ {1 \over 6}\int_{0}^{1}\bracks{\Psi\pars{{t \over 6} + {2 \over 3}} - \Psi\pars{{t \over 6} + {1 \over 6}}}\,\dd t = \left. \ln\pars{\Gamma\pars{t/6 + 2/3} \over \Gamma\pars{t/6 + 1/6}}\right\vert_{\ 0}^{\ 1}\label{1}\tag{1} \\[5mm] = &\ \ln\pars{{\Gamma\pars{5/6} \over \Gamma\pars{1/3}}\,{\Gamma\pars{1/6} \over \Gamma\pars{2/3}}} = \ln\pars{\sin\pars{\pi/3} \over \sin\pars{\pi/6}} = \ln\pars{\root{3}/2 \over 1/2}\label{2}\tag{2} \\[5mm] = & \bbx{\large {\ln\pars{3} \over 2}} \approx 0.5493 \\ & \end{align}
(\ ref {1}): Lihat Digamma$\ds{\Psi}$ Identitas $\ds{\bf\color{black}{6.3.22}}$.
(\ ref {2}): Rumus Refleksi Euler$\ds{\bf\color{black} {6.1.17}}$.
Perhatikan Digamma$\ds{\Psi}$Definisi Fungsi dalam istilah Fungsi Gamma $\ds{\Gamma}$: $$ \Psi\pars{z} = \totald{\ln\pars{\Gamma\pars{z}}}{z} $$ yang digunakan di (\ ref {1}).