Memutar lebar ke format panjang lalu menumpuk kolom
Saya diberi data yang datang dalam format lebar. Setiap baris berkaitan dengan variabel di luar tabel saat ini, dan kemungkinan nilai yang relevan untuk variabel itu. Saya mencoba untuk: (1) pivot ke format panjang, dan (2) nilai pivot bersarang.
Contoh
library(tibble)
df_1 <-
tribble(~key, ~values.male, ~values.female, ~values.red, ~values.green, ~value,
"gender", 0.5, 0.5, NA, NA, NA,
"age", NA, NA, NA, NA, "50",
"color", NA, NA, TRUE, FALSE, NA,
"time_of_day", NA, NA, NA, NA, "noon")
## # A tibble: 4 x 6
## key values.male values.female values.red values.green value
## <chr> <dbl> <dbl> <lgl> <lgl> <chr>
## 1 gender 0.5 0.5 NA NA NA
## 2 age NA NA NA NA 50
## 3 color NA NA TRUE FALSE NA
## 4 time_of_day NA NA NA NA noon
Dalam contoh ini, kita melihat bahwa genderdapat memiliki female = 0.5dan male = 0.5. Di sisi lain, agehanya dapat memiliki satu nilai 50. Dari baris # 3 kita belajar bahwa colordapat memiliki nilai red = TRUEdan green = FALSE, dan time_of_day = noon.
Jadi, tabel berporos harus mengambil bentuk bersarang dari:
my_pivoted_df <-
structure(
list(
var_name = c("gender", "age", "color", "time_of_day"),
vals = list(
structure(
list(
level = c("male", "female"),
value = c(0.5,
0.5)
),
row.names = c(NA, -2L),
class = c("tbl_df", "tbl", "data.frame")
),
"50",
structure(
list(
level = c("red", "green"),
value = c(TRUE,
FALSE)
),
row.names = c(NA, -2L),
class = c("tbl_df", "tbl", "data.frame")
),
"noon"
)
),
row.names = c(NA, -4L),
class = c("tbl_df", "tbl",
"data.frame")
)
## # A tibble: 4 x 2
## var_name vals
## <chr> <list>
## 1 gender <tibble [2 x 2]>
## 2 age <chr [1]>
## 3 color <tibble [2 x 2]>
## 4 time_of_day <chr [1]>
Upaya saya untuk menyelesaikan ini
Ada beberapa masalah dengan df_1. Pertama, penamaan kolom saat ini tidak nyaman. Header seperti valuetidak ideal karena mereka bertentangan dengan pivot_longer()'s ".value"mekanisme. Kedua, df_1has values(dalam bentuk jamak) bila keymemiliki lebih dari satu opsi (mis., "Merah" dan "hijau" untuk color), tetapi value(tunggal) bila hanya ada satu opsi untuk key(seperti dengan age). Di bawah ini adalah kode saya yang gagal, terinspirasi oleh jawaban ini .
library(tidyr)
library(dplyr)
df_1 %>%
rename_with( ~ paste(.x, "single", sep = "."), .cols = value) %>% ## changed the header because otherwise it breaks
pivot_longer(cols = starts_with("val"),
names_to = c("whatevs", ".value"), names_sep = "\\.")
## # A tibble: 8 x 7
## key whatevs male female red green single
## <chr> <chr> <dbl> <dbl> <lgl> <lgl> <chr>
## 1 gender values 0.5 0.5 NA NA NA
## 2 gender value NA NA NA NA NA
## 3 age values NA NA NA NA NA
## 4 age value NA NA NA NA 50
## 5 color values NA NA TRUE FALSE NA
## 6 color value NA NA NA NA NA
## 7 time_of_day values NA NA NA NA NA
## 8 time_of_day value NA NA NA NA noon
Saya tidak memiliki beberapa trik perselisihan untuk menyelesaikan ini.
Jawaban
Pendekatan rapi untuk mencapai hasil yang Anda inginkan mungkin terlihat seperti ini:
library(tibble)
df_1 <-
tribble(~key, ~values.male, ~values.female, ~values.red, ~values.green, ~value,
"gender", 0.5, 0.5, NA, NA, NA,
"age", NA, NA, NA, NA, "50",
"color", NA, NA, TRUE, FALSE, NA,
"time_of_day", NA, NA, NA, NA, "noon")
library(tidyr)
library(dplyr)
library(purrr)
df_pivoted <- df_1 %>%
mutate(across(everything(), as.character)) %>%
pivot_longer(-key, names_to = "level", names_prefix = "^values\\.", values_drop_na = TRUE) %>%
group_by(key) %>%
nest() %>%
mutate(data = map(data, ~ if (all(.x$level == "value")) deframe(.x) else .x))
df_pivoted
#> # A tibble: 4 x 2
#> # Groups: key [4]
#> key data
#> <chr> <list>
#> 1 gender <tibble [2 × 2]>
#> 2 age <chr [1]>
#> 3 color <tibble [2 × 2]>
#> 4 time_of_day <chr [1]>
EDIT Mengikuti klarifikasi dalam komentar Anda tentang hasil yang diinginkan, kami dapat dengan mudah menyingkirkan pernyataan peta sebagai akhir (yang pada dasarnya dimaksudkan untuk mengubah tibbles untuk kategori tanpa level menjadi vektor) dan menambahkan pernyataan mutasi sebelum bersarang untuk menggantikan level dengan NA untuk kategori tanpa level:
pivot_nest <- function(x) {
mutate(x, across(everything(), as.character)) %>%
pivot_longer(-key, names_to = "level", names_prefix = "^values\\.", values_drop_na = TRUE) %>%
group_by(key) %>%
mutate(level = ifelse(all(level == "value"), NA_character_, level)) %>%
nest()
}
df_pivoted <- df_1 %>%
pivot_nest()
df_pivoted
#> # A tibble: 4 x 2
#> # Groups: key [4]
#> key data
#> <chr> <list>
#> 1 gender <tibble [2 × 2]>
#> 2 age <tibble [1 × 2]>
#> 3 color <tibble [2 × 2]>
#> 4 time_of_day <tibble [1 × 2]>
df_pivoted$data
#> [[1]]
#> # A tibble: 2 x 2
#> level value
#> <chr> <chr>
#> 1 male 0.5
#> 2 male 0.5
#>
#> [[2]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> 50
#>
#> [[3]]
#> # A tibble: 2 x 2
#> level value
#> <chr> <chr>
#> 1 red TRUE
#> 2 red FALSE
#>
#> [[4]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> noon
df_2 <- tribble(~key, ~value, "age", "50", "income", "100000", "time_of_day", "noon")
df_pivoted2 <- df_2 %>%
pivot_nest()
df_pivoted2
#> # A tibble: 3 x 2
#> # Groups: key [3]
#> key data
#> <chr> <list>
#> 1 age <tibble [1 × 2]>
#> 2 income <tibble [1 × 2]>
#> 3 time_of_day <tibble [1 × 2]>
df_pivoted2$data
#> [[1]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> 50
#>
#> [[2]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> 100000
#>
#> [[3]]
#> # A tibble: 1 x 2
#> level value
#> <chr> <chr>
#> 1 <NA> noon
Satu opsi yang akan mengembalikan jenis keluaran yang sama dengan masukan yang disediakan:
df_1 %>%
group_split(key) %>%
map_dfr(~ select(., where(~ !all(is.na(.)))) %>%
pivot_longer(-key, names_to = "level", names_prefix = "^values\\.") %>%
summarise(key = first(key),
vals = if(n() == 1) list(value) else list(tibble(level, value))))
key vals
<chr> <list>
1 age <chr [1]>
2 color <tibble [2 × 2]>
3 gender <tibble [2 × 2]>
4 time_of_day <chr [1]>
Struktur keluaran:
$ key : chr [1:4] "age" "color" "gender" "time_of_day" $ vals:List of 4
..$ : chr "50" ..$ : tibble [2 × 2] (S3: tbl_df/tbl/data.frame)
.. ..$ level: chr [1:2] "red" "green" .. ..$ value: logi [1:2] TRUE FALSE
..$ : tibble [2 × 2] (S3: tbl_df/tbl/data.frame) .. ..$ level: chr [1:2] "male" "female"
.. ..$ value: num [1:2] 0.5 0.5 ..$ : chr "noon"
Ini data.tablesolusinya, karena saya lebih nyaman dengan meltdan dcast, tetapi harus mudah dialihkan ke dplyr:
library(data.table)
df <- setDT(df_1)
plouf <- melt(df,measure.vars = patterns("value")) %>%
.[!is.na(value),.(key,level = gsub("values.","",variable),value)]
ini memberi:
key level value
1: gender male 0.5
2: gender female 0.5
3: color red TRUE
4: color green FALSE
5: age value 50
6: time_of_day value noon
Anda sekarang dapat mengulang nilai unik keyuntuk menghasilkan apa yang Anda inginkan:
keylist <- unique(plouf$key)
result <- tibble(varname = keylist,
vals = lapply(keylist,function(x){
if(plouf[x == key,level[1]] != "value"){
plouf[x == key,.(level,value)]
}else{
plouf[x == key,value]
}
})
)
Di sini Anda mendapatkan tibble bersarang Anda (dengan data.tables dan karakter di dalamnya)