Menghitung $\sum_{n=1}^\infty\frac{2^{2n}H_{n+1}}{(n+1)^2{2n\choose n}}$
Jumlah lanjutan yang diusulkan oleh Cornel Valean:
$$S=\sum_{n=1}^\infty\frac{2^{2n}H_{n+1}}{(n+1)^2{2n\choose n}}$$ $$=4\text{Li}_4\left(\frac12\right)-\frac12\zeta(4)+\frac72\zeta(3)-4\ln^22\zeta(2)+6\ln2\zeta(2)+\frac16\ln^42-1$$
Saya berhasil menemukan representasi integral dari $\ \displaystyle\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^2{2n\choose n}}\ $ tapi tidak $S$:
Sejak
$$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n\choose n}}$$
kita bisa menulis
$$\frac{2\sqrt{x}\arcsin \sqrt{x}}{\sqrt{1-x}}=\sum_{n=1}^\infty\frac{2^{2n}x^{n}}{n{2n\choose n}}$$
sekarang kalikan kedua sisi dengan $-\frac{\ln(1-x)}{x}$ kemudian $\int_0^1$ dan gunakan itu $-\int_0^1 x^{n-1}\ln(1-x)dx=\frac{H_n}{n}$ kita punya
$$\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^2{2n\choose n}}=-2\int_0^1 \frac{\arcsin \sqrt{x}\ln(1-x)}{\sqrt{x}\sqrt{1-x}}dx\tag1$$
Tetapi saya tidak bisa mendapatkan representasi integral dari $S$. Ada ide?
Jika Anda menemukan integral, saya lebih suka solusi yang tidak menggunakan integrasi kontur atau Anda dapat menyerahkannya kepada saya untuk mencobanya. Terima kasih.
Jika pembaca ingin tahu tentang menghitung integral dalam $(1)$, set $x=\sin^2\theta$ lalu gunakan rangkaian Fourier $\ln(\cos \theta)$.
Jawaban
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\sum_{n = 1}^{\infty}{2^{2n}H_{n + 1} \over \pars{n + 1}^{2}{2n \choose n}}} = \sum_{n = 2}^{\infty}H_{n}\,{4^{n - 1} \over n^{2}{2n - 2 \choose n - 1}} = -1 + \sum_{n = 1}^{\infty} H_{n}\,{4^{n - 1} \over n^{2}}\,{\Gamma\pars{n}\Gamma\pars{n} \over \Gamma\pars{2n - 1}} \\[5mm] = &\ -1 + \sum_{n = 1}^{\infty} H_{n}\, 4^{n - 1}\pars{{2 \over n} - {1 \over n^{2}}}\,{\Gamma\pars{n}\Gamma\pars{n} \over\Gamma\pars{2n}} \\[5mm] = &\ -1 + 2\sum_{n = 1}^{\infty}H_{n}\, 4^{n - 1} \pars{\int_{0}^{1}x^{n - 1}\,\dd x} \int_{0}^{1}y^{n - 1}\pars{1 - y}^{n - 1}\,\dd y \\[2mm] &\ -\sum_{n = 1}^{\infty}H_{n}\, 4^{n - 1} \bracks{-\int_{0}^{1}\ln\pars{x}x^{n - 1}\,\dd x} \int_{0}^{1}y^{n - 1}\pars{1 - y}^{n - 1}\,\dd y \\[5mm] = &\ -1 + 2\int_{0}^{1}\int_{0}^{1} \sum_{n = 1}^{\infty}H_{n}\pars{4xy \over 1 - y}^{n - 1} \,\dd x\,\dd y \\[2mm] &\ + \int_{0}^{1}\ln\pars{y}\int_{0}^{1} \sum_{n = 1}^{\infty}H_{n}\, \pars{4xy \over 1 - y}^{n - 1} \,\dd x\,\dd y \\[5mm] = &\ -1 + 2\int_{0}^{1}\int_{0}^{4y/\pars{1 - y}} \sum_{n = 1}^{\infty}H_{n}x^{n - 1}\, {1 - y \over 4y}\,\dd x\,\dd y \\[2mm] &\ + \int_{0}^{1}\ln\pars{y}\int_{0}^{4y} \sum_{n = 1}^{\infty}H_{n}\, x^{n - 1}\,{y - 1 \over 4y} \,\dd x\,\dd y \\[5mm] = &\ -1 + {1 \over 2}\int_{0}^{1}{1 - y \over y}\int_{0}^{4y/\pars{1 - y}} \bracks{-\,{\ln\pars{1 - x} \over 1 - x}} \,{\dd x \over x}\,\dd y \\[2mm] &\ + {1 \over 4}\int_{0}^{1}{\pars{1 - y}\ln\pars{y} \over y}\int_{0}^{4y/\pars{1 - y}} \bracks{-\,{\ln\pars{1 - x} \over 1 - x}} \,{\dd x \over x}\,\dd y \\[5mm] = &\ -1 - {1 \over 2}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}} \int_{0}^{x/\pars{x + 4}}{1 - y \over y}\,\dd y\,\dd x \\[2mm] &\ - {1 \over 4}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}} \int_{0}^{x/\pars{x + 4}}{\pars{1 - y}\ln\pars{y} \over y} \,\dd y\,\dd x \\[5mm] = &\ -1 - {1 \over 4}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}} \int_{0}^{x/\pars{x + 4}} {\pars{1 - y}\bracks{2 + \ln\pars{y}} \over y}\,\dd y\,\dd x \end{align} Itu $\ds{y}$-integrasi menjadi: $$ -2\ln\pars{x \over 4 + x} - {1 \over 2}\ln^{2}\pars{x \over 4 + x} - {4 \over 4 + x} - {x \over 4 + x}\ln\pars{4 + x \over x} $$Sepertinya itu pekerjaan yang buruk !!!. Saya harap orang lain bisa mengambilnya dari sini.
Mengikuti ide @ Felix di atas:
$$S=\sum_{n=1}^\infty\frac{2^{2n}H_{n+1}}{(n+1)^2{2n\choose n}}=\sum_{n=2}^\infty\frac{2^{2n-2}H_n}{n^2{2n-2\choose n-1}}$$
Catat itu
$$\frac{{2n+2\choose n+1}}{{2n\choose n}}=\frac{\frac{\Gamma(2n+3)}{\Gamma^2(n+2)}}{\frac{\Gamma(2n+1)}{\Gamma^2(n+1)}}=\frac{\frac{(2n+2)(2n+1)\Gamma(2n+1)}{((n+1)\Gamma(n+1))^2}}{\frac{\Gamma(2n+1)}{\Gamma^2(n+1)}}=\frac{(2n+2)(2n+1)}{(n+1)^2}=\frac{2(2n+1)}{n+1}$$
menggantikan $n$ oleh $n-1$ kita mendapatkan
$$\frac{1}{{2n-2\choose n-1}}=\frac{2(2n-1)}{n{2n\choose n}}$$
Karena itu
$$S=\sum_{n=2}^\infty\frac{2^{2n-1}(2n-1)H_n}{n^3{2n\choose n}}=\sum _{n=1}^{\infty } \frac{2^{2n} H_n}{n^2 {2n\choose n}}-\frac12 \sum _{n=1}^{\infty } \frac{2^{2n} H_n}{n^3 {2n\choose n}}-1\tag1$$
Dalam badan pertanyaan yang kita miliki
$$\sum _{n=1}^{\infty } \frac{2^{2n} H_n}{n^2 {2n\choose n}}=-2\int_0^1 \frac{\arcsin \sqrt{x}\ln(1-x)}{\sqrt{x}\sqrt{1-x}}dx\overset{\sqrt{x}=\sin\theta}{=}-8\int_0^{\pi/2} \theta \ln(\cos\theta)d\theta$$
$$=-8\int_0^{\pi/2}\theta\left(-\ln(2)-\sum_{n=1}^\infty\frac{(-1)^n\cos(2n\theta)}{n}\right)d\theta=6\ln(2)\zeta(2)+\frac72\zeta(3)\tag2$$
dan di sini kami sudah menunjukkan
$$\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^3{2n\choose n}}=-8\text{Li}_4\left(\frac12\right)+\zeta(4)+8\ln^2(2)\zeta(2)-\frac{1}{3}\ln^4(2)\tag3$$
Terakhir, pasang $(2)$ dan $(3)$ di $(1)$ kami dapatkan
$$S=4\text{Li}_4\left(\frac12\right)-\frac12\zeta(4)+\frac72\zeta(3)-4\ln^2(2)\zeta(2)+6\ln(2)\zeta(2)+\frac16\ln^4(2)-1$$