Metode Momen, MLE dan Matriks informasi

Dec 13 2020

Kita punya $$\mathbb{E}[Y_i| X_i] = β_0 + β_1X_i$$

Apa yang akan menjadi penduga Metode Momen dan MLE untuk model ini?

Jawaban

2 Duck Dec 14 2020 at 03:28

Sekarang, Anda memiliki fungsi skor:

$$U =\begin{pmatrix} \frac{\partial log(L(β_0, β_1, σ^2)}{\partial \beta_0} \\ \frac{\partial log(L(β_0, β_1, σ^2)}{\partial \beta_1}\\ \frac{\partial log(L(β_0, β_1, σ^2)}{\partial \sigma^2}\\ \end{pmatrix}$$

Anda perlu menghitung matriks informasi $I$ dengan cara ini menghitung turunan dari $U$:

$$I =\begin{pmatrix} \frac{\partial log(L(β_0, β_1, σ^2)}{\partial^2 \beta_0} &.&. \\ \frac{\partial log(L(β_0, β_1, σ^2)}{\partial \beta_1\beta_0}&\frac{\partial log(L(β_0, β_1, σ^2)}{\partial^2 \beta_1}&.\\ \frac{\partial log(L(β_0, β_1, σ^2)}{\partial \sigma^2\beta_0}& \frac{\partial log(L(β_0, β_1, σ^2)}{\partial \sigma^2\beta_1}&\frac{\partial log(L(β_0, β_1, σ^2)}{\partial^2 \sigma^2}\\ \end{pmatrix}$$

Titik-titik terkait dengan simetri karena diagonal atas dan bawah sama. Setelah beberapa matematika, Anda akan mendapatkan ini:

$$I=\begin{pmatrix} -\frac{n}{\sigma^2} &.&. \\ -\frac{\sum_{i=1}^{n}x_i}{\sigma^2}&-\frac{\sum_{i=1}^{n}x_i^2}{\sigma^2}&.\\ -\frac{2}{\sigma^3}\sum_{i=1}^{n}(Y_i − β_0 − β_1x_i)& -\frac{2}{\sigma^3}\sum_{i=1}^{n}x_i(Y_i-\beta_0-\beta_1x_i)&\frac{n}{\sigma^3}-\frac{2}{\sigma^{5}}\sum_{i=1}^{n}(Y_i − β_0 − β_1x_i)^2=0\\ \end{pmatrix}$$

Yang merupakan matriks informasi.