Valutazione di un limite senza utilizzo della somma di Riemann

Aug 24 2020

Valutazione di$$\lim_{n \rightarrow \infty}\bigg[\frac{1}{n}+\frac{1}{n+2}+\frac{1}{n+4}+\cdots \cdots +\frac{1}{3n}\bigg]$$

Il mio lavoro: usare la somma di Riemann

$$\lim_{n\rightarrow \infty}\sum^{n}_{r=0}\frac{1}{n+2r}=\lim_{n\rightarrow\infty}\sum^{n}_{r=0}\frac{1}{1+2\frac{r}{n}}\cdot \frac{1}{n}$$

Mettere$\displaystyle \frac{r}{n}=x$e$\displaystyle \frac{1}{n}=dx$e modificando i limiti

$$\int^{1}_{0}\frac{1}{1+2x}dx=\frac{1}{2}\ln|1+2x|\bigg|^{1}_{0}=\frac{1}{2}\ln(3)$$

Ma sarebbe possibile risolvere il problema senza utilizzare la somma di Rienmann? come in, si potrebbero risolvere tali somme infinite in un metodo alternativo alla conversione della somma in un integrale.

Risposte

4 enzotib Aug 24 2020 at 18:51

Per pari$n=2m$noi abbiamo\begin{align} \sum_{r=0}^{2m}\frac{1}{2m+2r} &=\frac{1}{2}\sum_{r=0}^{2m}\frac{1}{m+r}=\\ &=\frac{1}{2}\left(\sum_{r=1}^{3m}\frac{1}{r}-\sum_{r=1}^{m-1}\frac{1}{r}\right)=\frac{1}{2}(H_{3m}-H_{m-1}), \end{align}dove$$ H_n=\sum_{r=1}^n\frac{1}{r} $$sono i numeri armonici . Data la nota relazione$$ \lim_{n\to\infty}(H_n-\log n)=\gamma $$noi abbiamo\begin{align} &\lim_{m\to\infty}\sum_{r=0}^{2m}\frac{1}{2m+2r} =\frac{1}{2}\lim_{m\to\infty}(H_{3m}-H_{m-1})=\\ &\qquad=\frac{1}{2}\lim_{m\to\infty}[(H_{3m}-\log(3m))+\log(3m)-(H_{m-1}-\log(m-1))-\log(m-1)]=\\ &\qquad=\frac{1}{2}\lim_{m\to\infty}[\gamma+\log(3m)-\gamma-\log(m-1)]=\\ &\qquad=\frac{1}{2}\lim_{m\to\infty}\log\left(\frac{3m}{m-1}\right)=\frac{1}{2}\log 3. \end{align}

Per dispari$n=2m+1$, tenere in considerazione\begin{align} &\frac{1}{n}+\frac{1}{n+2}+\ldots+\frac{1}{3n-2}+\frac{1}{3n}=\\ &=\left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{3n-1}+\frac{1}{3n}\right)-\left(\frac{1}{n+1}+\frac{1}{n+3}+\ldots+\frac{1}{3n-3}+\frac{1}{3n-1}\right) \end{align}possiamo scrivere\begin{align} \sum_{r=0}^{2m+1}\frac{1}{2m+1+2r} &= \sum_{s=0}^{4m+2}\frac{1}{2m+1+s}-\sum_{r=0}^{2m}\frac{1}{2m+2+2r}=\\ &= \sum_{s=0}^{4m+2}\frac{1}{2m+1+s}-\frac{1}{2}\sum_{r=0}^{2m}\frac{1}{m+1+r}=\\ &= H_{6m+3}-H_{2m}-\frac{1}{2}[H_{3m+1}-H_{m}] \end{align}e\begin{align} \lim_{m\to\infty}\sum_{r=0}^{2m+1}\frac{1}{2m+1+2r} &= \lim_{m\to\infty}\left(H_{6m+3}-H_{2m}-\frac{1}{2}[H_{3m+1}-H_{m}]\right)=\\ &= \lim_{m\to\infty}\left(\log(6m+3)-\log(2m)-\frac{1}{2}[\log(3m+1)-\log(m)]\right)=\\ &= \lim_{m\to\infty}\left(\log\left(\frac{6m+3}{2m}\right)-\frac{1}{2}\log\left(\frac{3m+1}{m}\right)\right)=\frac{1}{2}\log 3 \end{align}

Prova alternativa

Riscriviamo la somma come$$ \frac{1}{2}\sum_{r=0}^n\frac{1}{\frac{n}{2}+r}=\frac{1}{2}\left[\psi\left(\frac{3n+2}{2}\right)-\psi\left(\frac{n}{2}\right)\right], $$dove$\psi$è la funzione digamma e dove abbiamo usato l'equazione alle differenze$$ \psi(x+N)-\psi(x)=\sum_{k=0}^{N-1}\frac{1}{x+k}, $$vedi Digamma::Formula di ricorrenza e caratterizzazione .

Ora, tenendo conto della seguente disuguaglianza, valida per$x>0$ $$ \log x-\frac{1}{x}\leq\psi(x)\leq\log x-\frac{1}{2x}, $$vedi Digamma::Inequalities , abbiamo$$ \log\left(\frac{3n+2}{n}\right)-\frac{2}{3n+2}+\frac{1}{n}\leq\psi\left(\frac{3n+2}{2}\right)-\psi\left(\frac{n}{2}\right)\leq \log\left(\frac{3n+2}{n}\right)-\frac{1}{3n+2}+\frac{2}{n} $$e dal teorema di compressione, otteniamo il risultato.

2 FelixMarin Aug 25 2020 at 08:43

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\Large\left. a\right)}$ \begin{align} &\bbox[5px,#ffd]{\sum_{r = 0}^{n}{1 \over n + 2r}} = \sum_{r = 0}^{n}\int_{0}^{1}t^{n + 2r - 1}\,\dd t = \int_{0}^{1}\sum_{r = 0}^{n}t^{n + 2r - 1}\,\dd t \\[5mm] = &\ \int_{0}^{1}t^{n - 1}\,{t^{2n + 2} - 1 \over t^{2} - 1}\,\dd t = \int_{0}^{1}{t^{n - 1} - t^{3n + 1} \over 1 - t^{2}}\,\dd t = {1 \over 2}\int_{0}^{1}{t^{n/2 - 1} - t^{3n/2} \over 1 - t}\,\dd t \\[5mm] = &\ {1 \over 2}\pars{\int_{0}^{1}{1 - t^{3n/2} \over 1 - t}\,\dd t - \int_{0}^{1}{1 - t^{n/2 - 1} \over 1 - t}\,\dd t} = {H_{3n/2} - H_{n/2 -1} \over 2} \\[5mm] \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\, & {\bracks{\vphantom{\Large A}\ln\pars{3n/2} + \gamma + 1/\pars{3n}} - \bracks{\vphantom{\Large A}\ln\pars{n/2 - 1} + \gamma + 1/\pars{n - 2}}\over 2} \\[5mm] \stackrel{\mrm{as}\ n\ \to\ \infty}{\Large\to}\,\,\, & \bbx{\ln\pars{3} \over 2} \\ & \end{align}


$\ds{\Large\left. b\right)}$ \begin{align} &\bbox[5px,#ffd]{\sum_{r = 0}^{n}{1 \over n + 2r}} = \sum_{r = 0}^{\infty}\pars{{1 \over n + 2r} - {1 \over 3n + 2 + 2r}} \\[5mm] = & {1 \over 2}\sum_{r = 0}^{\infty}\pars{{1 \over r + n/2} - {1 \over r + 3n/2 + 1}} = \bbx{H_{3n/2} - H_{n/2 - 1} \over 2}, \quad\mbox{See}\ {\Large\left. a\right)}.\\ & \end{align}