複数年のnetcdfからの月平均を計算するxarray

Dec 18 2020

ERA5の2mの温度のnetcdfファイルがあります。これは2000年から2019年までの4か月から10か月で、合計13680のタイムステップと61x161の緯度経度の寸法になります。毎年、すべての毎日のタイムステップの月平均を個別に実行したいと思います。たとえば、2000年4月、2000年5月などのデータの月平均があります。xarray resampleで次のコードを試しましたが、2つの問題が発生します。

  1. どういうわけか、平均はすべての年の平均をしているようです。
  2. リサンプル関数は、データがないにもかかわらず、月01、02、03、11、および12を作成します。

これが私が話していることです:

import xarray as xr
ds = xr.open_dataset(netcdf)
monthly_data=ds.resample(time='1M').mean()

関係のない月を含む、毎月のタイムステップを示すタイムスタンプを確認できます。

print(np.array(monthly_data.time))
array(['2000-04-30T00:00:00.000000000', '2000-05-31T00:00:00.000000000',
       '2000-06-30T00:00:00.000000000', '2000-07-31T00:00:00.000000000',
       '2000-08-31T00:00:00.000000000', '2000-09-30T00:00:00.000000000',
       '2000-10-31T00:00:00.000000000', '2000-11-30T00:00:00.000000000',
       '2000-12-31T00:00:00.000000000', '2001-01-31T00:00:00.000000000',

温度の内容を確認するために、データをデータフレームに変換しました。

temp_ar = np.array(monthly_data.t2m)    
print(pd.DataFrame(temp_ar[0,:,:]).head())
          0           1           2    ...         158         159         160
0  270.940613  270.911652  270.926727  ...         NaN         NaN         NaN
1  271.294952  271.256744  271.250946  ...  272.948608  272.974731  272.998535
2  271.416779  271.457214  271.483459  ...  273.123169  273.079285  273.058563
3  271.848755  271.791382  271.784058  ...         NaN  273.264038         NaN
4  272.226837  272.144928  272.123016  ...         NaN         NaN         NaN

print(pd.DataFrame(temp_ar[1,:,:]).head())
   0    1    2    3    4    5    6    ...  154  155  156  157  158  159  160
0  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
1  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
2  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
3  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN

2番目の配列(2000年の月05に対応)にはnanが含まれていてはなりませんが、他のすべてのタイムステップ(何らかの理由で最後の配列を除く)ではnanが含まれています。なぜこれが起こっているのか誰かが知っていますか?

これが元のデータセットです

print(ds)
<xarray.Dataset>
Dimensions:    (latitude: 61, longitude: 161, time: 13680)
Coordinates:
  * longitude  (longitude) float32 -80.0 -79.9 -79.8 -79.7 ... -64.2 -64.1 -64.0
  * latitude   (latitude) float32 50.0 49.9 49.8 49.7 ... 44.3 44.2 44.1 44.0
  * time       (time) datetime64[ns] 2000-04-01 ... 2018-10-30T23:00:00
Data variables:
    t2m        (time, latitude, longitude) float32 ...
Attributes:
    Conventions:  CF-1.6
    history:      2020-12-07 03:50:31 GMT by grib_to_netcdf-2.16.0: /opt/ecmw...

どんな助けでもあります。多分私は他の方法を試すべきですか?乾杯!

回答

2 lhoupert Dec 18 2020 at 14:23

簡単な方法は、この方法を使用することだと思いますgroupby

例:

da = xr.DataArray(
    np.linspace(0, 1673, num=1674),
    coords=[pd.date_range("1/1/2000", "31/07/2004", freq="D")],
    dims="time",
)
da

出力:

<xarray.DataArray (time: 1674)>
array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.671e+03, 1.672e+03, 1.673e+03])
Coordinates:
  * time     (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2004-07-31

毎年の意味であなたができること:

da.groupby('time.year').mean()

出力:

<xarray.DataArray (year: 5)>
array([ 182.5,  548. ,  913. , 1278. , 1567. ])
Coordinates:
  * year     (year) int64 2000 2001 2002 2003 2004

異なる年の月平均については、多重指数を作成できます。

year_month_idx = pd.MultiIndex.from_arrays([da['time.year'], da['time.month']])
da.coords['year_month'] = ('time', year_month_idx)
da.groupby('year_month').mean()

出力:

<xarray.DataArray (year_month: 55)>
array([  15. ,   45. ,   75. ,  105.5,  136. ,  166.5,  197. ,  228. ,  258.5,
        289. ,  319.5,  350. ,  381. ,  410.5,  440. ,  470.5,  501. ,  531.5,
        562. ,  593. ,  623.5,  654. ,  684.5,  715. ,  746. ,  775.5,  805. ,
        835.5,  866. ,  896.5,  927. ,  958. ,  988.5, 1019. , 1049.5, 1080. ,
       1111. , 1140.5, 1170. , 1200.5, 1231. , 1261.5, 1292. , 1323. , 1353.5,
       1384. , 1414.5, 1445. , 1476. , 1506. , 1536. , 1566.5, 1597. , 1627.5,
       1658. ])
Coordinates:
 * year_month          (year_month) MultiIndex
 * year_month_level_0  (year_month) int64 2000 2000 2000 ... 2002 2002 2002
 * year_month_level_1  (year_month) int64 1 2 3 4 5 6 7 8 ... 11 12 1 2 3 4 5 6