Python-ベルヌーイのビーム方程式をscipyで解く

Nov 26 2020

質問に答えるプロセスは、以下のリンクの質問ですでに開始されていますが、そのトピックは、具体的には、回答された機能の統合に関するものでした。そこで、新しい質問を追加しました。

Python-関数の統合と結果のプロット

問題:scipy積分を使用してビーム方程式y ''(x)= M(x)/(E * I)を解く方法。

解決策、gboffiの厚意による:

#---------- DESCRIPTION

# cantilever beam with point load P at the free end
# original beam equation: y''(x) = M(x)/(E*I)
# moment equation: M(x) = -P*x
# x goes from the free end to the clamped end

# we have a second order diff eq: y''(x) = x
# we implement a new function:
#      h = y',
#      h' = y'' = M(x) = x

# we get a system of two ODE of first order
#      y' = h
#      h' = x

# we write the equations in vector form
#     Y' = F(x, Y(x)) = F(x,Y)

# we define a function that returns the original values

#----------- CODE

from __future__ import division
from numpy import linspace
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

# Exact solution, E*Iy = const, y1 = y', y0 = y, 
w = 10  #beam cross sec width (mm)
h = 10  #beam cross sec height (mm)
Iy = (w*h**3)/12   #cross sec moment of inertia (mm^4)
E = 200000   #steel elast modul (N/mm^2)
L = 100  #beam length(mm)
P = 100   #point load (N)

x = linspace(0, L, 51)

y1 = (-P/(2*E*Iy))*x**2+(P*L**2)/(2*E*Iy)
y0 = (-P/(6*E*Iy))*x**3+((P*L**2)/(2*E*Iy))*x-(2*P*L**3)/(6*E*Iy)

# Define the vector function for E=const for integration
def F(x,Y):
    #unpack the vector function
    y = Y[0]
    h = Y[1]
    #compute the derivatives
    dy_dx = h
    dh_dx = (-P/(E*Iy))*x
    #return the vector of derivatives values
    return [dy_dx, dh_dx]

# Numerical solution
s = solve_ivp(
    F, # Y[0]=y0, Y[1]=y1, dy0dx=y1, dy1dx=x
    [L, 0.0], # interval of integration (NB: reversed, because...)
    [0.0, 0.0], # initial conditions (at the 1st point of integ interval)
    t_eval=linspace(L, 0, 101) # where we want the solution to be known
    )

# Plotting
fig, (ax1, ax2) = plt.subplots(2)
ax1.plot(x, y0, label="Exact y")
ax2.plot(x, y1, label="Exact y'")
ax1.plot(s.t[::2], s.y[0][::2], label="Numeric y",  linestyle='', marker='.')
ax2.plot(s.t[::2], s.y[1][::2], label="Numeric y'", linestyle='', marker='.')
plt.show()

正確な解:正確な解は、定積分を使用してビーム方程式を2回積分し、境界条件を使用して積分定数を定義することによって作成されます。すべては上記のwikiリンクで説明されています。以下は、y ''(x)、y '(x)(勾配)およびy(x)(たわみ)をプロットするためのコードです。ダイアグラムは裏返され、ビームの自由端はx = 0にあります。

from __future__ import division  #to enable normal floating division
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
w = 10  #beam cross sec width (mm)
h = 10  #beam cross sec height (mm)
I = (w*h**3)/12   #cross sec moment of inertia (mm^4)
I1 = (w*h**3)/12
E = 200000   #steel elast modul (N/mm^2)
L = 100  #beam length(mm)
F = 100   #force (N)

# Define equations
def d2y_dx2(x):
    return (-F*x)/(E*I)

def dy_dx(x):
    return (1/(E*I))*(-0.5*F*x**2 + 0.5*F*L**2)

def y(x):
    return (1/(E*I))*(-(1/6)*F*(x**3) + (1/2)*F*(L**2)*x - (1/3)*F*(L**3))

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)

a = 0
b = L
x = np.linspace(a,b,100)

ax1.plot(x, d2y_dx2(x))
ax2.plot(x, dy_dx(x))
ax3.plot(x, y(x))
plt.show()

おおよその解決策(種類):以下のコードはwillcrackによって作成されました。形状は前の質問よりも良く見えますが、値はまだ問題ありません。

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

# Integration parameters
a = 0.0
b = L

# Define the beam equation
def d2y_dx2(x,y=None):
    return (-F*x)/(E*I)

    
# Define the integration1 - slope
def slope(x):
    slope_res = np.zeros_like(x)
    for i,val in enumerate(x):
        y,err = integrate.quad(f,a,val)
        slope_res[i]=y
    return slope_res

# Define the integration1 - deflection
def defl(x):
    
    defl_res = np.zeros_like(x)
    for i,val in enumerate(x):
        y, err = integrate.dblquad(d2y_dx2,0,val, lambda x: 0, lambda x: val)
        defl_res[i]=y
    return defl_res

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

回答

2 gboffi Nov 26 2020 at 09:45

微分方程式を積分している場合、定積分をループで計算するアプローチは、たとえば、最適ではありません。

Scipyの標準的なアプローチは、の使用ですscipy.integrate.solve_ivp。これは、適切な統合方法(デフォルトでは、ルンゲクッタ45)を使用して、特別なオブジェクトの観点からソリューションを提供します。

常微分方程式の数値積分の分野ではいつものように、この方法は1次微分方程式のシステムに限定されますが、2次方程式はヘルパー関数を導入する1次方程式のシステムに変換できます。

    Y" = M ⇒ {y' = h, h' = M} 

これは複雑に聞こえますが、その実装は非常に簡単です

In [51]: #########################################################################
    ...: # L, EJ = 1.0
    ...: #########################################################################
    ...: # exact solution
    ...: from numpy import linspace
    ...: x = linspace(0, 1, 51)
    ...: y1, y0 = (x**2-1)/2, (x**3-3*x+2)/6
    ...: #########################################################################
    ...: # numerical solution
    ...: from scipy.integrate import solve_ivp
    ...: s = solve_ivp(
    ...:     lambda x, Y: [Y[1], x], # Y[0]=y0, Y[1]=y1, dy0dx=y1, dy1dx=x
    ...:     [1.0, 0.0], # interval of integration (NB: reversed, because...)
    ...:     [0.0, 0.0], # initial conditions (at the 1st point of integ interval)
    ...:     t_eval=np.linspace(1, 0, 101) # where we want the solution to be known
    ...:     )
    ...: #########################################################################
    ...: # plotting
    ...: from matplotlib.pyplot import grid, legend, plot
    ...: plot(x, y0, label="Exact y")
    ...: plot(x, y1, label="Exact y'")
    ...: plot(s.t[::2], s.y[0][::2], label="Numeric y",  linestyle='', marker='.')
    ...: plot(s.t[::2], s.y[1][::2], label="Numeric y'", linestyle='', marker='.')
    ...: legend() ; grid() ;

In [52]: 



OPは問題の理解を報告しましたsolve_ivp(lambda x, Y: [Y[1], x], ...

通常の形式の1次常微分方程式のシステムがあります

y₁' = f₁(x, y₁(x), …, yₙ(x))
…   = …
yₙ' = f₁(x, y₁(x), …, yₙ(x))

ベクトル量を表すために大文字を使用して書くことができます

Y' = F(x, Y(x))

微分方程式系を解くには、solve_ipvまさにこのF(x, Y)関数が必要です。

ラムダ式の代わりに、次のような関数定義を書くことができます。これはおそらくもっと自明です。

def F(x, Y):
    # unpack the vector of function values
    y = Y[0]
    h = Y[1]
    # compute the derivatives
    dy_over_dx = h
    dh_over_dx = x
    # return the vector of derivatives values
    return [dy_over_dx, dh_over_dx]

s = solve_ivp(F, …)

答えの中で簡潔に(簡潔に多すぎる?)と表現されたのはlambda x,Y:[Y[1],x]