Wann ist der Kegel? $C(X)$ auf einem lokal kompakten Raum?
Es gibt ein paar Fragen in diesem Forum mit Sonderfällen dieser Frage beschäftigen, zum Beispiel dieses für$X = \mathbb Z$und das für$X = \mathbb R$. Meine Frage ist
Was sind notwendige und ausreichende Bedingungen auf $X$ die die lokale Kompaktheit des Kegels sicherstellen $C(X) = (X \times I)/(X \times \{1\})$?
Die Antwort kann von der genauen Definition der lokalen Kompaktheit abhängen. Hier sind zwei Varianten:
$X$ ist lokal kompakt, wenn jeder $x \in X$ hat eine kompakte Nachbarschaft.
$X$ ist lokal kompakt, wenn jeder $x \in X$ hat eine Nachbarschaftsbasis, die aus kompakten Mengen besteht.
Offensichtlich ist 2. stärker als 1. Wenn angenommen wird, dass "kompakt" "Hausdorff" enthält, sind 1. und 2. äquivalent. Gleiches gilt für Hausdorff$X$ unabhängig von der Interpretation von "kompakt".
Der Leser wird ermutigt, seine Lieblingsinterpretation zu verwenden.
Eine offensichtlich ausreichende Bedingung ist folgende:
Wenn $X$ ist also kompakt $C(X)$ ist kompakt und damit lokal kompakt im Sinne von 1. Wenn $X$ ist also kompaktes Hausdorff $C(X)$ ist kompakt Hausdorff und damit lokal kompakt im Sinne von 2.
Ebenso ist eine offensichtlich notwendige Bedingung folgende:
Wenn $C(X)$ ist also lokal kompakt $X$ ist lokal kompakt.
Tatsächlich, $X$ ist homöomorph zur Basis $X \times \{0\}$ von $C(X)$ das ist geschlossen in $C(X)$, also lokal kompakt.
Wenn $X$ ist lokal kompakt, dann deutlich der offene Unterraum $C(X) \setminus \{*\} \approx X \times [0,1)$ ist lokal kompakt, wo $*$ ist die Spitze von $C(X)$dh die gemeinsame Äquivalenzklasse der Punkte in $X \times \{1\}$.
Es scheint mir, dass ein nicht kompakter $X$kann keinen lokal kompakten Kegel haben. Der Grund ist, dass wenn$C(X)$ ist also lokal kompakt $*$muss eine kompakte Nachbarschaft haben. Ich kann ein Teilergebnis nachweisen (siehe meine Antwort auf meine eigene Frage). Aber ich bin interessiert, ob es einen allgemeineren Satz gibt.
Antworten
Hier ist eine teilweise Antwort.
Lassen $X$ein normaler (einschließlich Hausdorff) zählbar parakompakter Raum sein. Dann sind die folgenden gleich:
$X$ ist kompakt.
$C(X)$ ist kompakt.
$C(X)$ ist lokal kompakt.
Dies gilt für alle parakompakten Hausdorff-Räume $X$insbesondere für alle messbaren $X$.
Die Äquivalenz von 1. und 2. ist offensichtlich und 2. impliziert 3. Es bleibt zu zeigen, dass 3. impliziert 1. Unsere Strategie ist die Einbettung $X$ als geschlossene Teilmenge einer kompakten Nachbarschaft der Spitze $*$ von $C(X)$. Dies erfolgt durch Verschieben der Basis$X \times \{0\}$ von $C(X)$ gegenüber $*$.
Lassen $U$ eine offene Nachbarschaft von sein $*$ im $C(X)$ mit kompaktem Verschluss $K \subset C(X)$. Wenn$p : X \times I \to C(X)$ bezeichnet dann die Quotientenkarte $V = p^{-1}(U)$ ist eine offene Nachbarschaft von $X \times \{1\}$ im $X \times I$. Für jede$x \in X$ Lassen $f(x) = \inf\{ t \in I \mid \{x \} \times [t,1] \subset V \}$. Deutlich$0 \le f(x) < 1$ weil $V$ist offen. Außerdem$\{x \} \times (f(x),1] \subset V$. Die Funktion$f$ ist ober halbkontinuierlich: Let $f(x) < r$. Wählen Sie$t$ so dass $f(x) < t < r$. Dann$\{x \} \times [t,1] \subset V$ und so existiert eine offene Nachbarschaft $W_x$ von $x$ im $X$ so dass $W_x \times [t,1] \subset V$. Dann$f(y) \le t < r$ zum $y \in W_x$. Schon seit$f(x) < 1$ für alle $x$ und die konstante Funktion $1$ ist niedriger semikontinuierlich, ein Satz, der von Dowker (siehe "Über zählbar parakompakte Räume", Canadian Journal of Mathematics 3 (1951): 219-224 / Satz 4) und von Katetov (siehe "Über realwertige Funktionen in der Topologie" unabhängig bewiesen wurde Räume. "Fund. Math. 38 (1951): 85-91 / Satz 2) sagt, dass es eine kontinuierliche gibt $h : X \to \mathbb R$ eine solche $f(x) < h(x) < 1$ für alle $x$. Definieren$H : X \to C(X), H(x) = p(x,h(x))$. Dies ist eine Einbettung: In der Tat die Einschränkung$\bar p : X \times [0,1) \stackrel{p}{\to} C(X)$ ist eine Einbettung und $\bar h : X \to X \times [0,1), \bar h(x) = (x,h(x))$ist eine Einbettung. Außerdem,$H(X)$ ist geschlossen in $C(X)$ und $\bar h(X) \subset V$also $H(X) \subset U \subset K$. Wir schließen daraus$H(X)$ist kompakt. Deshalb$X$ ist kompakt.
Aktualisieren:
Der obige Satz besagt, dass ein normaler (einschließlich Hausdorff) Raum zählbar parakompakt ist $X$ Was nicht kompakt ist, kann keinen lokal kompakten Kegel haben.
Im Sonderfall von a$\sigma$-kompakt lokal kompakt Hausdorff $X$ Wir können einen alternativen Beweis liefern, der den obigen "Sandwich-Satz" nicht für obere und untere halbkontinuierliche Funktionen verwendet.
Also lass $C(X)$ lokal kompakt sein, $U$ eine offene Nachbarschaft von sein $*$ im $C(X)$ mit kompaktem Verschluss $K \subset C(X)$ und $V = p^{-1}(U)$ Das ist eine offene Nachbarschaft von $X \times \{1\}$ im $X \times I$.
Wir haben $X = \bigcup_{n=1}^\infty K_n$ mit kompakt $K_n \subset X$ so dass $K_n \subset \operatorname{int}K_{n+1}$. Es existiert offen$W_n \subset X$ und $t_n \in (0,1)$ so dass $K_n \times \{1\} \subset W_n \times (t_n,1] \subset V$. Wlog können wir davon ausgehen, dass die Reihenfolge$(t_n)$nimmt nicht ab. Beachten Sie, dass$s_n = (1+t_n)/2$ ist enthalten in $(t_n,1)$. Lassen$B_n = \operatorname{bd} K_n$ Das ist kompakt (aber möglicherweise leer; in diesem Fall $K_n$ist geschlossen). Die Sätze$C_n = K_n \setminus \operatorname{int}K_{n-1}$ sind kompakt und enthalten die disjunkte Menge $B_n$ und $B_{n-1}$ (formal setzen wir $K_0 = \emptyset$). Wir konstruieren induktiv kontinuierlich$f_n : C_n \to I$ wie folgt: Für $n=1$ Lassen $f_1(x) = s_2$. Gegeben$f_1,\ldots, f_n$ so dass $f_i(x) = s_i$ zum $x \in B_{i-1}$, $f_i(x) = s_{i+1}$ zum $x \in B_i$ und $f_i(x) \in [s_i,s_{i+1}]$ für alle $x \in C_i$ wir verwenden den Urysohn-Satz, um zu finden $f_{n+1} : C_{n+1} \to I$ so dass $f_{n+1}(x) = s_{n+1}$ zum $x \in B_n$, $f_{n+1}(x) = s_{n+2}$ zum $x \in B_{n+1}$ und $f_{n+1}(x) \in [s_{n+1},s_{n+2}]$ für alle $x \in C_{n+1}$. Die Sammlung all dieser$f_n$, $n \in \mathbb N$kann zu einem fortlaufenden eingefügt werden $f : X \to I$ mit der Eigenschaft, dass $(x,f(x)) \in V \setminus X \times \{1\}$. In der Tat für$x \in C_n$ wir haben $f(x) = f_n(x) \in [s_n,s_{n+1}] \subset (t_n,1)$ und somit $(x,f(x)) \in C_n \times (t_n,1) \subset W_n \setminus X \times \{1\} \subset V \setminus X \times \{1\}$. Durch den Bau$X' = \{(x,f(x)) \mid x \in X \}$ ist eine geschlossene Teilmenge von $C(X)$ das ist homöomorph zu $X$ und als geschlossene Teilmenge von $K$, kompakt.