Komputasi $\sum_{n=1}^\infty\frac{2^{2n}H_{n+1}}{(n+1)^2{2n\choose n}}$
Jumlah uang muka yang diusulkan oleh Cornel Valean:
$$S=\sum_{n=1}^\infty\frac{2^{2n}H_{n+1}}{(n+1)^2{2n\choose n}}$$ $$=4\text{Li}_4\left(\frac12\right)-\frac12\zeta(4)+\frac72\zeta(3)-4\ln^22\zeta(2)+6\ln2\zeta(2)+\frac16\ln^42-1$$
Saya berhasil menemukan representasi integral dari$\ \displaystyle\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^2{2n\choose n}}\ $tapi tidak$S$:
Sejak
$$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n\choose n}}$$
kita bisa menulis
$$\frac{2\sqrt{x}\arcsin \sqrt{x}}{\sqrt{1-x}}=\sum_{n=1}^\infty\frac{2^{2n}x^{n}}{n{2n\choose n}}$$
sekarang kalikan kedua ruas dengan$-\frac{\ln(1-x)}{x}$kemudian$\int_0^1$dan gunakan itu$-\int_0^1 x^{n-1}\ln(1-x)dx=\frac{H_n}{n}$kita punya
$$\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^2{2n\choose n}}=-2\int_0^1 \frac{\arcsin \sqrt{x}\ln(1-x)}{\sqrt{x}\sqrt{1-x}}dx\tag1$$
Tapi saya tidak bisa mendapatkan representasi integral dari$S$. Ada ide?
Jika Anda menemukan integral, saya lebih suka solusi yang tidak menggunakan integrasi kontur atau Anda dapat menyerahkannya kepada saya untuk mencobanya. Terima kasih.
Jika pembaca ingin tahu tentang menghitung integral dalam$(1)$, mengatur$x=\sin^2\theta$kemudian gunakan deret Fourier dari$\ln(\cos \theta)$.
Jawaban
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\sum_{n = 1}^{\infty}{2^{2n}H_{n + 1} \over \pars{n + 1}^{2}{2n \choose n}}} = \sum_{n = 2}^{\infty}H_{n}\,{4^{n - 1} \over n^{2}{2n - 2 \choose n - 1}} = -1 + \sum_{n = 1}^{\infty} H_{n}\,{4^{n - 1} \over n^{2}}\,{\Gamma\pars{n}\Gamma\pars{n} \over \Gamma\pars{2n - 1}} \\[5mm] = &\ -1 + \sum_{n = 1}^{\infty} H_{n}\, 4^{n - 1}\pars{{2 \over n} - {1 \over n^{2}}}\,{\Gamma\pars{n}\Gamma\pars{n} \over\Gamma\pars{2n}} \\[5mm] = &\ -1 + 2\sum_{n = 1}^{\infty}H_{n}\, 4^{n - 1} \pars{\int_{0}^{1}x^{n - 1}\,\dd x} \int_{0}^{1}y^{n - 1}\pars{1 - y}^{n - 1}\,\dd y \\[2mm] &\ -\sum_{n = 1}^{\infty}H_{n}\, 4^{n - 1} \bracks{-\int_{0}^{1}\ln\pars{x}x^{n - 1}\,\dd x} \int_{0}^{1}y^{n - 1}\pars{1 - y}^{n - 1}\,\dd y \\[5mm] = &\ -1 + 2\int_{0}^{1}\int_{0}^{1} \sum_{n = 1}^{\infty}H_{n}\pars{4xy \over 1 - y}^{n - 1} \,\dd x\,\dd y \\[2mm] &\ + \int_{0}^{1}\ln\pars{y}\int_{0}^{1} \sum_{n = 1}^{\infty}H_{n}\, \pars{4xy \over 1 - y}^{n - 1} \,\dd x\,\dd y \\[5mm] = &\ -1 + 2\int_{0}^{1}\int_{0}^{4y/\pars{1 - y}} \sum_{n = 1}^{\infty}H_{n}x^{n - 1}\, {1 - y \over 4y}\,\dd x\,\dd y \\[2mm] &\ + \int_{0}^{1}\ln\pars{y}\int_{0}^{4y} \sum_{n = 1}^{\infty}H_{n}\, x^{n - 1}\,{y - 1 \over 4y} \,\dd x\,\dd y \\[5mm] = &\ -1 + {1 \over 2}\int_{0}^{1}{1 - y \over y}\int_{0}^{4y/\pars{1 - y}} \bracks{-\,{\ln\pars{1 - x} \over 1 - x}} \,{\dd x \over x}\,\dd y \\[2mm] &\ + {1 \over 4}\int_{0}^{1}{\pars{1 - y}\ln\pars{y} \over y}\int_{0}^{4y/\pars{1 - y}} \bracks{-\,{\ln\pars{1 - x} \over 1 - x}} \,{\dd x \over x}\,\dd y \\[5mm] = &\ -1 - {1 \over 2}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}} \int_{0}^{x/\pars{x + 4}}{1 - y \over y}\,\dd y\,\dd x \\[2mm] &\ - {1 \over 4}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}} \int_{0}^{x/\pars{x + 4}}{\pars{1 - y}\ln\pars{y} \over y} \,\dd y\,\dd x \\[5mm] = &\ -1 - {1 \over 4}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}} \int_{0}^{x/\pars{x + 4}} {\pars{1 - y}\bracks{2 + \ln\pars{y}} \over y}\,\dd y\,\dd x \end{align}Itu$\ds{y}$-integrasi menjadi:$$ -2\ln\pars{x \over 4 + x} - {1 \over 2}\ln^{2}\pars{x \over 4 + x} - {4 \over 4 + x} - {x \over 4 + x}\ln\pars{4 + x \over x} $$Tampaknya menjadi pekerjaan yang buruk !!!. Saya berharap orang lain dapat mengambilnya dari sini.
Mengikuti ide @Felix di atas:
$$S=\sum_{n=1}^\infty\frac{2^{2n}H_{n+1}}{(n+1)^2{2n\choose n}}=\sum_{n=2}^\infty\frac{2^{2n-2}H_n}{n^2{2n-2\choose n-1}}$$
Perhatikan bahwa
$$\frac{{2n+2\choose n+1}}{{2n\choose n}}=\frac{\frac{\Gamma(2n+3)}{\Gamma^2(n+2)}}{\frac{\Gamma(2n+1)}{\Gamma^2(n+1)}}=\frac{\frac{(2n+2)(2n+1)\Gamma(2n+1)}{((n+1)\Gamma(n+1))^2}}{\frac{\Gamma(2n+1)}{\Gamma^2(n+1)}}=\frac{(2n+2)(2n+1)}{(n+1)^2}=\frac{2(2n+1)}{n+1}$$
mengganti$n$oleh$n-1$kita mendapatkan
$$\frac{1}{{2n-2\choose n-1}}=\frac{2(2n-1)}{n{2n\choose n}}$$
Karena itu
$$S=\sum_{n=2}^\infty\frac{2^{2n-1}(2n-1)H_n}{n^3{2n\choose n}}=\sum _{n=1}^{\infty } \frac{2^{2n} H_n}{n^2 {2n\choose n}}-\frac12 \sum _{n=1}^{\infty } \frac{2^{2n} H_n}{n^3 {2n\choose n}}-1\tag1$$
Di badan pertanyaan yang kita miliki
$$\sum _{n=1}^{\infty } \frac{2^{2n} H_n}{n^2 {2n\choose n}}=-2\int_0^1 \frac{\arcsin \sqrt{x}\ln(1-x)}{\sqrt{x}\sqrt{1-x}}dx\overset{\sqrt{x}=\sin\theta}{=}-8\int_0^{\pi/2} \theta \ln(\cos\theta)d\theta$$
$$=-8\int_0^{\pi/2}\theta\left(-\ln(2)-\sum_{n=1}^\infty\frac{(-1)^n\cos(2n\theta)}{n}\right)d\theta=6\ln(2)\zeta(2)+\frac72\zeta(3)\tag2$$
dan di sini kami sudah menunjukkan
$$\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^3{2n\choose n}}=-8\text{Li}_4\left(\frac12\right)+\zeta(4)+8\ln^2(2)\zeta(2)-\frac{1}{3}\ln^4(2)\tag3$$
Akhirnya, pasang$(2)$dan$(3)$di$(1)$kita peroleh
$$S=4\text{Li}_4\left(\frac12\right)-\frac12\zeta(4)+\frac72\zeta(3)-4\ln^2(2)\zeta(2)+6\ln(2)\zeta(2)+\frac16\ln^4(2)-1$$