Come posso aumentare la precisione del risultato di RegionPlot per questa funzione?

Aug 17 2020

Ho questa funzione

f := 1024 (1 - (9 x^2)/4)^2 Cosh[(π x)/
    3]^2 Sinh[π x]^2 (8 (16 - 216 x^2 + 
        81 x^4 + (4 + 9 x^2)^2 Cosh[(2 π x)/3]) Sinh[π x]^2 - 
     1/256 ((4 + 9 x^2)^2 Sinh[x (2 π - y)] + 
        2 (64 - 144 x^2 + (4 + 9 x^2)^2 Cosh[(2 π x)/3]) Sinh[
          x y] - 9 (4 - 3 x^2)^2 Sinh[x (2 π + y)])^2);

Voglio vedere in quale intervallo di variabili questa funzione è negativa. Utilizzando RegionPlot

RegionPlot[ f < 0, {y, 2, 2.25}, {x, 1.15, 1.17}, 
 WorkingPrecision -> 30, PlotPoints -> 50]

Ottengo questa trama

Quindi, quando diminuisco gli intervalli come

RegionPlot[ 
 f < 0, {y, Rationalize[2.1299849, 0], Rationalize[2.1299855, 0]}, {x,
   Rationalize[1.15970110, 0], Rationalize[1.15970113, 0]}, 
 WorkingPrecision -> 90, PlotPoints -> 150]

io ottengo

Qui, non è chiaro se le parti blu si toccano o meno. Come posso entrare più nel dettaglio per vedere se la parte blu è continua oppure no?

Risposte

3 MichaelE2 Aug 17 2020 at 20:00

La soluzione di plottaggio più semplice

ContourPlot[f,
 {y, Rationalize[2.1299849, 0],  Rationalize[2.1299855, 0]},
 {x, Rationalize[1.15970110, 0], Rationalize[1.15970113, 0]},
 ContourShading ->
  {RGBColor[0.368417, 0.506779, 0.709798, 0.4], None},
 Contours -> {{0}},
 PlotPoints -> 25, WorkingPrecision -> 32,
 Method -> {"TransparentPolygonMesh" -> True}
 ]

Ma le trame non sono sempre molto convincenti, essendo progettate per dare solo un'idea approssimativa di ciò che sta accadendo.

Soluzione analitica

Come ho mostrato in questa risposta a una domanda simile , possiamo mostrare analiticamente che c'è un nodo:

jac = D[f, {{x, y}}];
cpsol = FindRoot[jac == {0, 0}, {{x, 1.15}, {y, 2.13}}, 
   WorkingPrecision -> 50];
cpt = {x, y} /. cpsol
f /. cpsol      (* shows cpt is on curve *)
f /. N[cpsol]   (* show numerical noise at cpt is substantial *)
(*
  {1.1597011139328870007473930523093558428367204499142, 
   2.1299852028277681162523681416937176426970454505325}
  0.*10^-36
  0.0119859
*)

Addomesticamento RegionPlot

RegionPlotsi è evoluto dall'introduzione della Regionfunzionalità. RegionPlotsembra utilizzare questa funzionalità per generare il grafico, e ignora l' WorkingPrecisionopzione, che è evidente dal rumore numerico. Credo che la funzionalità della regione sia basata sulla funzionalità FEM, disponibile solo nella precisione della macchina. (Allo stesso modo, l'opzione MaxRecursionsembra defunta.)

Ecco un modo per controllare la precisione di lavoro:

ClearAll[fff];
fff[x0_Real, y0_Real] := 
  Block[{x = SetPrecision[x0, Infinity], 
    y = SetPrecision[y0, Infinity]},
   N[
    1024 (1 - (9 x^2)/4)^2 Cosh[(π x)/
        3]^2 Sinh[π x]^2 (8 (16 - 216 x^2 + 
          81 x^4 + (4 + 9 x^2)^2 Cosh[(2 π x)/
             3]) Sinh[π x]^2 - 
       1/256 ((4 + 9 x^2)^2 Sinh[x (2 π - y)] + 
           2 (64 - 144 x^2 + (4 + 9 x^2)^2 Cosh[(2 π x)/3]) Sinh[
             x y] - 9 (4 - 3 x^2)^2 Sinh[x (2 π + y)])^2),
    $MachinePrecision]
   ];

RegionPlot[
 fff[x, y] < 0,
 {y, Rationalize[2.1299849, 0],  Rationalize[2.1299855, 0]},
 {x, Rationalize[1.15970110, 0], Rationalize[1.15970113, 0]},
 PlotPoints -> 100]

Ma una rondine non fa l'estate.

2 Hausdorff Aug 17 2020 at 20:05

Dato che sei interessato a sapere se le due regioni si incontrano, puoi anche usare ContourPlot, che sembra essere un po 'più stabile:

ContourPlot[f == 0, {y, 2.1299849, 2.1299855}, {x, 1.15970110, 1.15970113}, 
    WorkingPrecision -> 40, MaxRecursion -> 6]