Se due insiemi di zero sono omeomorfi, anche l'anello dei polinomi sugli insiemi è omeomorfo?

Aug 19 2020

Mi dispiace molto di aver commesso questo evidente errore, avrei dovuto chiedere che anche gli ideali fossero primi. L'ho risolto.

Permettere $R$ essere l'anello di polinomi complessi in $n$ variabili e let $I$ e $J$ essere i primi ideali di $R$. Ritenere$V(I)$ e $V(J)$, l'insieme zero degli ideali, cioè l'insieme dei punti inviati a zero da tutti i polinomi nell'ideale. Dà a ciascuno di questi set,$V(I)$ e $V(J)$, la topologia subspaziale indotta dalla solita topologia su $\mathbb{C}^n$ e poi presumere $V(I)$ e $V(J)$sono omeomorfici. Ora considera gli anelli$R/I$ e $R/J$. Devono essere isomorfi come anelli? In caso affermativo, questo risultato ha un nome e puoi fornire una prova o indicare dove posso trovare una prova? In caso contrario, vorrei un contro esempio.

Per aiutare a spiegare ulteriormente la domanda, ecco un esempio concreto:
Say$R$ è l'anello di polinomi complessi in due variabili e diciamo di avere gli ideali generati dai polinomi $x^2+y^2-1$ e $x^2+y^2-2$. Le due topologie sono omeomorfe in questo caso e anche gli anelli del quoziente sono isomorfi ad anello. Deve sempre essere vero che l'omeomorfismo implica l'isomorfismo dell'anello? In caso negativo, è invece necessaria una condizione più forte, come il diffeomorfismo?

Risposte

7 Stahl Aug 19 2020 at 13:58

La risposta è no! Permettere$k = \Bbb{C},$ e lascia $I = (x^2 - y^3)$ e $J = (x)$ dentro $\Bbb{C}[x,y].$ Innanzitutto, nota che $$\Bbb{C}[x,y]/I\cong\Bbb{C}[t^2,t^3]\not\cong\Bbb{C}[t]\cong\Bbb{C}[x,y]/J$$(il primo non è integralmente chiuso, mentre il secondo lo è). Tuttavia, lo sostengo$V(I)$ e $V(J)$ sono omeomorfi come sottoinsiemi di $\Bbb{C}^2$ con la sua topologia standard.

Abbiamo mappe \begin{align*} \phi : V(x)&\to V(x^2 - y^3)\\ (0,t)&\mapsto (t^3, t^2) \end{align*} e \begin{align*} \psi : V(x^2 - y^3)&\to V(x)\\ (a,b)&\mapsto\begin{cases}(0,\frac{a}{b}),\quad b\neq 0,\\ (0,0),\quad a = b = 0.\end{cases} \end{align*}

Innanzitutto, nota che queste mappe sono inverse. È chiaro che$\psi\circ\phi = \operatorname{id},$ e se $b\neq 0$ noi calcoliamo \begin{align*} \phi\circ\psi(a,b) &= \phi(0,\frac ab)\\ &= \left(\left(\frac{a}{b}\right)^3,\left(\frac{a}{b}\right)^2\right). \end{align*} Ma \begin{align*} a^2 = b^3&\implies\frac{a^2}{b^2} = b\\ &\implies\left(\frac{a}{b}\right)^3 = \frac{a}{b}\cdot b = a. \end{align*} Lo osserviamo anche $\psi\circ\phi(0,0) = (0,0).$

Ora, tutto ciò che dobbiamo verificare è che queste mappe siano continue. Lo si vede$\phi$è continuo, dato che è dato dai polinomi. La sfida è verificarlo$\psi$è continuo. Questo è chiaro lontano da$b = 0,$ quindi dobbiamo solo controllare la continuità in $(a,b) = (0,0).$

Affermazione: la funzione$\psi$ è continuo a $(0,0).$

Prova: è sufficiente dimostrare che ogni componente di$\psi$è continuo. Chiaramente$(a,b)\mapsto 0$ è continuo, quindi dobbiamo solo occuparci della continuità della mappa $(a,b)\mapsto a/b$ a $b = 0.$

In modo esplicito, dobbiamo dimostrarlo a tutti $\epsilon > 0,$ lì esiste $\delta > 0$ tale che se

  1. $(\alpha,\beta)\in V(x^2 - y^3),$ e
  2. $0 < \left|(\alpha,\beta)\right| < \delta,$

poi $\left|\frac{\alpha}{\beta}\right| < \epsilon.$

Innanzitutto, osservalo perché $(\alpha,\beta)\in V(x^2 - y^3),$ noi abbiamo $\alpha^2 = \beta^3,$ il che implica $\left|\alpha\right|^2 = \left|\beta\right|^3.$ Ora, imposta $\delta = \epsilon^2.$ abbiamo \begin{align*} 0 < \left|(\alpha,\beta)\right| < \delta &\iff 0^2 < \left|(\alpha,\beta)\right|^2 < \delta^2\\ &\iff 0 < \left|\alpha\right|^2 + \left|\beta\right|^2 = \left|\beta\right|^3 + \left|\beta\right|^2 < \delta^2. \end{align*} Questo implica che $$0 < \left|\beta\right|^2(\left|\beta\right| + 1) < \delta^2,$$ e certamente abbiamo $$\left|\beta\right|^2 \leq \left|\beta\right|^2(\left|\beta\right| + 1).$$ Mettendo tutto questo insieme troviamo che se $0 < \left|(\alpha,\beta)\right| < \epsilon^2,$ Poi abbiamo $$ \left|\beta\right|^2 < \epsilon^4. $$ Dal momento che entrambi $\left|\beta\right|$ e $\epsilon$ sono positivi, lo concludiamo $$\left|\beta\right| < \epsilon^2.$$

Quindi, \begin{align*} \left|\frac\alpha\beta\right|^2 &=\frac{\left|\alpha\right|^2}{\left|\beta\right|^2} \\ &= \frac{\left|\beta\right|^3}{\left|\beta\right|^2}\\ &=\left|\beta\right|\\ &<\epsilon^2. \end{align*}Prendendo radici quadrate, otteniamo il risultato desiderato. Phew! QED

Nota 1: puoi ottenere esempi più semplici su campi chiusi non algebricamente: ad esempio, let$k = \Bbb{Q}.$ Poi $V(x^2 + 1) = V(x^2 - 2) = \emptyset$ come sottoinsiemi di $\Bbb{Q}^2,$ ma $$\Bbb{Q}[x]/(x^2 + 1)\cong\Bbb{Q}[i]\not\cong\Bbb{Q}[\sqrt{2}]\cong\Bbb{Q}[x]/(x^2 - 2).$$

Nota 2: la risposta è anche no sui campi generali$k$ quando $k^n$ viene data la topologia Zariski, ma questa è ancora più facile da vedere: entrambe $V(x)$ e $V(x^2 - y^3)$sono curve affini irriducibili, e quindi hanno la topologia cofinita. Ovviamente, gli omeomorfismi non sono ciò che vogliamo considerare quando facciamo geometria algebrica (vedi qui per una discussione).

Nota 3: Infine, anche la risposta è no quando lavoriamo con$\operatorname{Spec}R[x_1,\dots, x_n]$ invece di $R^n.$ Più in generale, non è vero che se $Z_1$ e $Z_2$ sono sottospazi chiusi omeomorfi di $\operatorname{Spec}R,$ e li consideriamo come sottoschemi ridotti, $\mathcal{O}_{Z_1}(Z_1)\cong\mathcal{O}_{Z_2}(Z_2).$ Anzi, lascia $R = k\times k'$essere il prodotto di due campi non isomorfi. Poi$\operatorname{Spec}R = \{0\times k',k\times 0\},$ e se $Z_1 = \{0\times k'\}$ e $Z_2 = \{k\times 0\},$ allora entrambi sono semplicemente punti, ma per ipotesi, $\mathcal{O}_{Z_1}(Z_1) = k\not\cong k' = \mathcal{O}_{Z_2}(Z_2).$

Un altro esempio potrebbe essere $R = \Bbb{R}[x],$ con $I = (x)$ e $J = (x^2 + 1)$. $V(x)$ e $V(x^2 + 1)$ sono entrambi i punti all'interno $\operatorname{Spec}R,$ ma $\Bbb{R}[x]/(x)\cong\Bbb{R}\not\cong\Bbb{C}\cong\Bbb{R}[x]/(x^2 + 1).$

3 OsamaGhani Aug 19 2020 at 06:37

Non necessariamente. Considera gli ideali$(x)$ e $(x^2)$ in $\mathbb{C}[x]$. Come suona chiaramente$\mathbb{C}[x]/(x) \ncong \mathbb{C}[x]/(x^2)$. Se hai visto la Nullstellensatz, notalo$(x^2)$ non è un ideale radicale, e questo $\sqrt{(x^2)} = (x)$ così che $V(x^2) = V(x) = 0$. Questo esempio dovrebbe funzionare per qualsiasi altro campo credo.

Modifica: ancora una volta, la risposta è no per uno stupido motivo (e di nuovo potresti obiettare a cui di solito non pensi$(1)$, ma è una sorta di essenziale per definire la topologia Zariski in primo luogo). Risponderò a questa domanda$\mathbb{R}$. Se pensi all'ideale$(x^2+1)$ e l'ideale $(1)$, poi $V(x^2+1) = V(1) = \phi$. Ma$\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$ mentre $\mathbb{R}[x]/(1) \cong 0$.

Oops a destra $(1)$ non è primo.