ðïŒðïŒp * qïŒïŒãèšç®ããå¹ççãªæ¹æ³ããã§ãpãšqã¯çŽ æ°ã§ã
ããŸããã $p$ ãã㊠$q$ çŽ æ°ã§ããã $\phi$ãªã€ã©ãŒã®ããŒãã£ãšã³ã颿°ãèšç®ã®å¹ççãªæ¹æ³ã¯ãããŸãã$\phi(\phi(p\cdot q)) = \phi((p-1)(q-1))$ãããã¯åã«ãã¡ã¯ã¿ãªã³ã°ã«åºã¥ããã®ã§ã¯ãããŸãã $p-1$ ãã㊠$q-1$ïŒ
æããã«ã $p$ ãã㊠$q$ 2ã«çãããªãã $p-1$ ãã㊠$q-1$ ã§ããããã®çµæããããã®çŽ å æ°åè§£ã¯ã®çŽ å æ°åè§£ãšã¯å®å šã«ç°ãªããŸã $p$ ãã㊠$q$ããããã£ãŠããã®ãããªã·ã§ãŒãã«ããã¯ååšããªããšæããŸãã
ç§ã¯äœããèŠèœãšããŠããŸããïŒ
åç
ããããå¹ççã§ã¯ãªããäžè¬çã§ã¯ãããŸãããä»®å®ããŸã$p=2p'+1$ ãã㊠$q=2q'+1$ ã©ã $p',q'$çŽ æ°ã§ããæ¬¡ã«å æ°åè§£$pq$é£ãããšæãããŸããïŒå®éããããã®çŽ æ°ã¯å®å šãªçŽ æ°ãšããŠç¥ãããŠããã2ã€ã®å®å šãªçŽ æ°ã®ç©ãå æ°åè§£ããã®ã¯é£ãããšèããããŠããŸããïŒãããã
$$\varphi(\varphi(pq))=\varphi(4p'q')=2\varphi(p')\varphi(q')=2(p'-1)(q'-1).$$
ããªããèšç®ã§ããã° $\varphi(\varphi(pq))$ ãã $pq$ å¹ççã« $p,q$ ãã®åœ¢åŒã®å Žåãå æ°åè§£ã§ããŸã $pq$ å¹ççã« $p,q$ãã®åœ¢ã®ãåæžã¯æ¬¡ã®ããã«æ©èœããŸããäºæ¬¡é¢æ°ãèããŸã$f$ ã«ãã£ãŠäžãããã
$$f(x)=(x-p')(x-q')=x^2 -(p'+q') + p'q'.$$
ã®ä¿æ°ãèšç®ã§ããŸã $f$ã ãªã®ã§
$$p'+q'=[pq-2\varphi(\varphi(pq))+3]/4$$ $$p'q'=[pq+2\varphi(\varphi(pq))-5]/8$$
ãããã£ãŠã2次æ¹çšåŒã䜿çšããŠãã®æ ¹ãè§£ãããšãã§ããŸãã $f$ å埩ããŸã $p',q'$ãããããã®å æ°åè§£$pq$ å埩ããããšãã§ããŸãã
ã ããããããããªãã¯äœãèŠèœãšããŠããŸãããèšç®ããå¹ççãªæ¹æ³ã¯ãããããããŸãã$\varphi(\varphi(pq))$ ä»»æã®æ°ã®å Žå $pq$ ïŒãã¡ã¯ã¿ãªã³ã°ãç°¡åã§ãªãéãïŒã