リーマン和を使用せずに限界を評価する
の評価 $$\lim_{n \rightarrow \infty}\bigg[\frac{1}{n}+\frac{1}{n+2}+\frac{1}{n+4}+\cdots \cdots +\frac{1}{3n}\bigg]$$
私の仕事:リーマン和を使う
$$\lim_{n\rightarrow \infty}\sum^{n}_{r=0}\frac{1}{n+2r}=\lim_{n\rightarrow\infty}\sum^{n}_{r=0}\frac{1}{1+2\frac{r}{n}}\cdot \frac{1}{n}$$
プット $\displaystyle \frac{r}{n}=x$ そして $\displaystyle \frac{1}{n}=dx$ 制限の変更
$$\int^{1}_{0}\frac{1}{1+2x}dx=\frac{1}{2}\ln|1+2x|\bigg|^{1}_{0}=\frac{1}{2}\ln(3)$$
しかし、リーマン和を使用せずに問題を解決することは可能でしょうか?のように、合計を積分に変換する代わりの方法で、そのような無限の合計を解くことができます。
回答
でも $n=2m$ 我々は持っています \begin{align} \sum_{r=0}^{2m}\frac{1}{2m+2r} &=\frac{1}{2}\sum_{r=0}^{2m}\frac{1}{m+r}=\\ &=\frac{1}{2}\left(\sum_{r=1}^{3m}\frac{1}{r}-\sum_{r=1}^{m-1}\frac{1}{r}\right)=\frac{1}{2}(H_{3m}-H_{m-1}), \end{align} どこ $$ H_n=\sum_{r=1}^n\frac{1}{r} $$ある高調波の数字は。既知の関係を考えると$$ \lim_{n\to\infty}(H_n-\log n)=\gamma $$ 我々は持っています \begin{align} &\lim_{m\to\infty}\sum_{r=0}^{2m}\frac{1}{2m+2r} =\frac{1}{2}\lim_{m\to\infty}(H_{3m}-H_{m-1})=\\ &\qquad=\frac{1}{2}\lim_{m\to\infty}[(H_{3m}-\log(3m))+\log(3m)-(H_{m-1}-\log(m-1))-\log(m-1)]=\\ &\qquad=\frac{1}{2}\lim_{m\to\infty}[\gamma+\log(3m)-\gamma-\log(m-1)]=\\ &\qquad=\frac{1}{2}\lim_{m\to\infty}\log\left(\frac{3m}{m-1}\right)=\frac{1}{2}\log 3. \end{align}
奇数の場合 $n=2m+1$、考慮に入れて \begin{align} &\frac{1}{n}+\frac{1}{n+2}+\ldots+\frac{1}{3n-2}+\frac{1}{3n}=\\ &=\left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{3n-1}+\frac{1}{3n}\right)-\left(\frac{1}{n+1}+\frac{1}{n+3}+\ldots+\frac{1}{3n-3}+\frac{1}{3n-1}\right) \end{align} 我々は書ける \begin{align} \sum_{r=0}^{2m+1}\frac{1}{2m+1+2r} &= \sum_{s=0}^{4m+2}\frac{1}{2m+1+s}-\sum_{r=0}^{2m}\frac{1}{2m+2+2r}=\\ &= \sum_{s=0}^{4m+2}\frac{1}{2m+1+s}-\frac{1}{2}\sum_{r=0}^{2m}\frac{1}{m+1+r}=\\ &= H_{6m+3}-H_{2m}-\frac{1}{2}[H_{3m+1}-H_{m}] \end{align} そして \begin{align} \lim_{m\to\infty}\sum_{r=0}^{2m+1}\frac{1}{2m+1+2r} &= \lim_{m\to\infty}\left(H_{6m+3}-H_{2m}-\frac{1}{2}[H_{3m+1}-H_{m}]\right)=\\ &= \lim_{m\to\infty}\left(\log(6m+3)-\log(2m)-\frac{1}{2}[\log(3m+1)-\log(m)]\right)=\\ &= \lim_{m\to\infty}\left(\log\left(\frac{6m+3}{2m}\right)-\frac{1}{2}\log\left(\frac{3m+1}{m}\right)\right)=\frac{1}{2}\log 3 \end{align}
代替証明
合計を次のように書き直してみましょう $$ \frac{1}{2}\sum_{r=0}^n\frac{1}{\frac{n}{2}+r}=\frac{1}{2}\left[\psi\left(\frac{3n+2}{2}\right)-\psi\left(\frac{n}{2}\right)\right], $$ どこ $\psi$はディガンマ関数であり、ここで差分方程式を使用しました$$ \psi(x+N)-\psi(x)=\sum_{k=0}^{N-1}\frac{1}{x+k}, $$Digamma :: Recurrenceの式と特性を参照してください。
ここで、次の不等式を考慮に入れて、 $x>0$ $$ \log x-\frac{1}{x}\leq\psi(x)\leq\log x-\frac{1}{2x}, $$Digamma :: Inequalitiesを参照してください、$$ \log\left(\frac{3n+2}{n}\right)-\frac{2}{3n+2}+\frac{1}{n}\leq\psi\left(\frac{3n+2}{2}\right)-\psi\left(\frac{n}{2}\right)\leq \log\left(\frac{3n+2}{n}\right)-\frac{1}{3n+2}+\frac{2}{n} $$ そして、はさみうちの定理によって、結果が得られます。
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\Large\left. a\right)}$ \begin{align} &\bbox[5px,#ffd]{\sum_{r = 0}^{n}{1 \over n + 2r}} = \sum_{r = 0}^{n}\int_{0}^{1}t^{n + 2r - 1}\,\dd t = \int_{0}^{1}\sum_{r = 0}^{n}t^{n + 2r - 1}\,\dd t \\[5mm] = &\ \int_{0}^{1}t^{n - 1}\,{t^{2n + 2} - 1 \over t^{2} - 1}\,\dd t = \int_{0}^{1}{t^{n - 1} - t^{3n + 1} \over 1 - t^{2}}\,\dd t = {1 \over 2}\int_{0}^{1}{t^{n/2 - 1} - t^{3n/2} \over 1 - t}\,\dd t \\[5mm] = &\ {1 \over 2}\pars{\int_{0}^{1}{1 - t^{3n/2} \over 1 - t}\,\dd t - \int_{0}^{1}{1 - t^{n/2 - 1} \over 1 - t}\,\dd t} = {H_{3n/2} - H_{n/2 -1} \over 2} \\[5mm] \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\, & {\bracks{\vphantom{\Large A}\ln\pars{3n/2} + \gamma + 1/\pars{3n}} - \bracks{\vphantom{\Large A}\ln\pars{n/2 - 1} + \gamma + 1/\pars{n - 2}}\over 2} \\[5mm] \stackrel{\mrm{as}\ n\ \to\ \infty}{\Large\to}\,\,\, & \bbx{\ln\pars{3} \over 2} \\ & \end{align}
$\ds{\Large\left. b\right)}$ \begin{align} &\bbox[5px,#ffd]{\sum_{r = 0}^{n}{1 \over n + 2r}} = \sum_{r = 0}^{\infty}\pars{{1 \over n + 2r} - {1 \over 3n + 2 + 2r}} \\[5mm] = & {1 \over 2}\sum_{r = 0}^{\infty}\pars{{1 \over r + n/2} - {1 \over r + 3n/2 + 1}} = \bbx{H_{3n/2} - H_{n/2 - 1} \over 2}, \quad\mbox{See}\ {\Large\left. a\right)}.\\ & \end{align}