Comment puis-je accéder aux éléments d'un tenseur 3D à l'aide d'indices spécifiés dans TensorFlow?
J'essaie d'obtenir les lignes d'un tenseur 3D dans un ordre spécifique d'indices. Voici les entrées:
import tensorflow as tf
matrix = tf.constant([
[[0, 1], [2, 3], [4, 5], [6, 7]],
[[8, 9], [10, 11], [12, 13], [14, 15]],
[[16, 17], [18, 19], [20, 21], [22, 23]],
[[24, 25], [26, 27], [28, 29], [30, 31]],
[[32, 33], [34, 35], [36, 37], [38, 39]]
])
indx = tf.constant([[3,2,1,0], [0,1,2,3], [1,0,3,2], [0,3,1,2], [1,2,3,0]])
# required output tensor:
[[[6, 7], [4, 5], [2, 3], [0, 1]],
[[8, 9], [10, 11], [12, 13], [14, 15]],
[[18, 19], [16, 17], [22, 23], [20, 21]],
[[24, 25], [30, 31], [26, 27], [28, 29]],
[[34, 35], [36, 37], [38, 39], [32, 33]]]
J'ai du mal avec tf.gather_nd()
. Toute suggestion? Je peux voir que cela se passe ici mais je ne sais pas comment appliquer sur toute la matrice sans utiliser de for
boucle outf.map_fn
print(tf.gather_nd(matrix[0], tf.expand_dims(indx, -1)[0]).numpy().tolist())
print(tf.gather_nd(matrix[1], tf.expand_dims(indx, -1)[1]).numpy().tolist())
print(tf.gather_nd(matrix[2], tf.expand_dims(indx, -1)[2]).numpy().tolist())
print(tf.gather_nd(matrix[3], tf.expand_dims(indx, -1)[3]).numpy().tolist())
print(tf.gather_nd(matrix[4], tf.expand_dims(indx, -1)[4]).numpy().tolist())
"""
[[6, 7], [4, 5], [2, 3], [0, 1]]
[[8, 9], [10, 11], [12, 13], [14, 15]]
[[18, 19], [16, 17], [22, 23], [20, 21]]
[[24, 25], [30, 31], [26, 27], [28, 29]]
[[34, 35], [36, 37], [38, 39], [32, 33]]
"""
EDIT: J'ai posé une question similaire à propos de numpy. Une réponse d'indexation intelligente résout la version numpy, mais il est difficile de l'appliquer sur Tensors. N'hésitez pas à consulter la réponse acceptée ici: Comment puis-je obtenir des éléments d'une matrice 3D à l'aide d'indices spécifiés dans numpy?
Réponses
Duh, c'était stupide! Il existe déjà une très grande fonction disponible qui fonctionne sur un tableau multidimensionnel dans tensorflow; tf.gather()
Consultez l' argument batch_dims pour plus d'informations.
>> tf.gather(matrix, indx, batch_dims=1).numpy().tolist()
[[[6, 7], [4, 5], [2, 3], [0, 1]],
[[8, 9], [10, 11], [12, 13], [14, 15]],
[[18, 19], [16, 17], [22, 23], [20, 21]],
[[24, 25], [30, 31], [26, 27], [28, 29]],
[[34, 35], [36, 37], [38, 39], [32, 33]]]