construction de tableau de liste

Jan 16 2021

Je veux créer la liste ix={1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}

Je peux faire

L=4;
ix = ConstantArray[0, Length[L]^2]
k = 0;
For[i = 1, i <= Length[ix], i++, If[Mod[i, L] == 1, k = k + 1, k]; ix[[i]] = k;]

ix
(* output *)
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

Mais je n'aime pas ça. Y a-t-il une manière plus "Mathematica" de le faire?

Réponses

20 SimonWoods Jan 16 2021 at 19:23

Comme vous le voyez dans les commentaires et les réponses, la manière naturelle de le faire dans Mathematica est de créer un tableau 2D, puis de l'aplatir. Quelques autres exemples de cette approche:

Flatten[Table[i, {i, 4}, 4]]

Flatten[Array[# &, {4, 4}]]

Pour ce cas spécifique, vous pouvez également faire quelque chose comme:

Ceiling[Range[16]/4]
13 bills Jan 17 2021 at 01:23

Vous pouvez également interpréter cela comme un produit externe:

Outer[Times, Range[4], ConstantArray[1, 4]] // Flatten
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
12 kglr Jan 16 2021 at 22:29

Vous pouvez également utiliser la forme à 4 arguments de Array:

Array[# &, {4, 4}, 1, Flatten @* List]
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
Array[Range @ 4 &, 4, 1, Sort @* Join]
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
Array[{1, 0, 0, 0} &, 4, 1, Accumulate @* Join]
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

Et quelques méthodes supplémentaires:

Round[1/2 + 6 Range[16]/25]

Sort @ Mod[Range @ 16, 4, 1]

Join @@ Table @@@ Table[{i, 4}, {i, 4}]

1 + ⌊Most @ Subdivide[4, 16]⌋

Join @@ Accumulate @ Table[1, 4, 4]

Accumulate @ Upsample[{1, 1, 1, 1}, 4] (*thanks: Simon Woods *)

⌈ArrayResample[Range@4, 16, {"Bin", 1}]⌉

Internal`RepetitionFromMultiplicity @ Thread[{Range @ 4, 4}]
10 CATrevillian Jan 16 2021 at 18:44

Cela utilise une fonction anonyme en tandem avec ConstantArrayet Rangepour faire ce que vous voulez:

ConstantArray[#,4]&/@Range@4//Flatten

{1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}

7 wuyudi Jan 17 2021 at 13:53

Autrement:

Quotient[Range@16, 4, -3]

{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

7 user1066 Jan 16 2021 at 22:12

Riffle / Nid

Range[4]//Nest[Riffle[#,#]&,#,2]& 

Alternativement:

Range[4]//Riffle[#,#]&//Riffle[#,#]&

{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

BitShiftRight

Après la Ceiling méthode soignée de Simon Woods:

1+Table[BitShiftRight[n,2], {n, 0, 15}]

Alternativement:

1+BitShiftRight[#,2]&@Range[0,15]

IntegerPart

À partir de la documentation de BitShiftRight-> Détails et de la relation entre BitShiftRightet IntegerPart:

1+IntegerPart@Table[n/4, {n, 0, 15}]

Alternativement:

1+IntegerPart[Range[0,15]/4]

Cas

Cases[Range[4], x_:> Splice@{x,x,x,x}]

(À l'origine un commentaire)

6 wxffles Jan 18 2021 at 04:00
CoefficientList[Series[x^4/((1 - x) (1 - x^4)), {x, 0, 19}], x][[5 ;;]]

.

LinearRecurrence[{1, 0, 0, 1, -1}, {1, 1, 1, 1, 2}, 16]

.

Table[Length@IntegerPartitions[k - 1, All, {1, 4}], {k, 16}]
5 MichaelE2 Jan 18 2021 at 05:28

Quelques autres:

PadRight[{Range@4}\[Transpose], {4, 4}, "Fixed"] // Flatten
Outer[# &, #, #] &@Range@4 // Flatten

Mise à jour - Autres:

Range[4] SparseArray[{}, {4, 4}, 1] // Flatten
With[{p = ConstantArray[1, 4]},
  SparseArray[{Band[p] -> 1}, Length[p] p]@"NonzeroPositions" // Flatten
  ]
TensorProduct[Range@4, ConstantArray[1, {4}]] // Flatten
3 SneezeFor16Min Jan 29 2021 at 02:34

Recommander:

Quotient[Range[4, 19], 4] (* ~1.759μs *)

Référence

Quotient[Range@16, 4, -3] (* ~2.554μs *)
Outer[Times, Range[4], ConstantArray[1, 4]] // Flatten (* ~2.573μs *)

Internal`RepetitionFromMultiplicity @ Thread[{Range @ 4, 4}] (* ~3.498μs *)
Flatten@Transpose@ConstantArray[Range@4, 4] (* ~3.527μs *)
Flatten[ConstantArray[Range[4], 4], {2, 1}] (* ~3.701μs *)
Flatten[Table[i, {i, 4}, 4]] (* ~3.919μs *)
Range[4]//Riffle[#,#]&//Riffle[#,#]& (* ~3.928μs *)

1+BitShiftRight[#,2]&@Range[0,15] (* ~4.191μs *)
Range[4]//Nest[Riffle[#,#]&,#,2]& (* ~4.411μs *)
Array[{1, 0, 0, 0} &, 4, 1, Accumulate @* Join] (* ~4.747μs *)

Sort@Mod[Range@16, 4, 1] (* ~5.506μs *)
Array[Range @ 4 &, 4, 1, Sort @* Join] (* ~5.655μs *)
Range[4] SparseArray[{}, {4, 4}, 1] // Flatten (* ~5.853μs *)
Outer[# &, #, #] &@Range@4 // Flatten (* ~5.974μs *)

Join @@ Accumulate @ Table[1, 4, 4] (* ~6.300μs *)
Flatten[Array[# &, {4, 4}]] (* ~6.833μs *)

PadRight[{Range@4}\[Transpose], {4, 4}, "Fixed"] // Flatten (* ~7.013μs *)
Join @@ Table @@@ Table[{i, 4}, {i, 4}] (* ~7.589μs *)

Cases[Range[4], x_:> Splice@{x,x,x,x}] (* ~8.041μs *)
Array[# &, {4, 4}, 1, Flatten @* List] (* ~8.519μs *)

1+Table[BitShiftRight[n,2], {n, 0, 15}] (* ~9.554μs *)

ConstantArray[#,4]&/@Range@4//Flatten (* ~10.058μs *)
Ceiling[Range[16]/4] (* ~11.210μs *)
1 + ⌊Most @ Subdivide[4, 16]⌋ (* ~13.635μs *)
1+IntegerPart@Table[n/4, {n, 0, 15}] (* ~18.513μs *)
TensorProduct[Range@4, ConstantArray[1, {4}]] // Flatten (* ~18.924μs *)
Round[1/2 + 6 Range[16]/25] (* ~22.859μs *)
Table[Length@IntegerPartitions[k - 1, All, {1, 4}], {k, 16}] (* ~58.000μs *)

Accumulate @ Upsample[{1, 1, 1, 1}, 4] (* ~194.7μs with 6k runs *)
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 1, 1, 1, 2}, 16] (* ~336.2μs with 5k runs *)
CoefficientList[Series[x^4/((1 - x) (1 - x^4)), {x, 0, 19}], x][[5 ;;]] (* ~529.7μs with 18k runs *)

⌈ArrayResample[Range@4, 16, {"Bin", 1}]⌉ (* ~1620μs with 1k runs *)

Chacun répété 30k fois, sauf indication contraire. On peut conclure que, dans Mathematica ,

  • l'algèbre simple fonctionne généralement plus rapidement
  • plus d'arguments spécifiés $\neq$ plus rapide
  • / division traîne, par rapport à Quotient
  • les opérations sur les bits ne sont pas aussi rapides qu'en C
  • /@est lent, si @peut se propager
  • ...
1 Roman Jan 19 2021 at 00:29
f[x_] = InterpolatingPolynomial[{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}, x] // Expand
(*    8256 - x*536645091/20020 + x^2*1798275487/48510 -
      x^3*128580216461/4365900 + x^4*25293360053/1663200 -
      x^5*8745144029/1603800 + x^6*768388933/544320 -
      x^7*315030731/1166400 + x^8*92080313/2381400 -
      x^9*237559139/57153600 + x^10*30277/90720 -
      x^11*50569/2566080 + x^12*12427/14968800 -
      x^13*27557/1167566400 + x^14*17/41912640 - x^15/314344800    *)

Array[f, 16]
(*    {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}    *)