Colonne duplicate in Julia Dataframes
In Python Pandas e R è possibile eliminare facilmente le colonne duplicate: basta caricare i dati, assegnare i nomi delle colonne e selezionare quelli non duplicati.
Quali sono le migliori pratiche per gestire tali dati con Julia Dataframes? L'assegnazione di nomi di colonne duplicati non è consentita qui. Capisco che l'unico modo sarebbe massaggiare di più i dati in arrivo e sbarazzarsi di tali dati prima di costruire un Dataframe?
Il fatto è che è quasi sempre più facile gestire le colonne duplicate nel dataframe che è già costruito, piuttosto che nei dati in arrivo.
UPD: intendevo i nomi delle colonne duplicati. Creo dataframe da dati grezzi, dove i nomi delle colonne (e quindi i dati) potrebbero essere ripetuti.
UPD2: aggiunto esempio di Python.
>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame(np.hstack([np.zeros((4,1)), np.ones((4,2))]), columns=["a", "b", "b"])
>>> df
a b b
0 0.0 1.0 1.0
1 0.0 1.0 1.0
2 0.0 1.0 1.0
3 0.0 1.0 1.0
>>> df.loc[:, ~df.columns.duplicated()]
a b
0 0.0 1.0
1 0.0 1.0
2 0.0 1.0
3 0.0 1.0
Costruisco il mio Julia Dataframe da una matrice Float32 e quindi assegno i nomi delle colonne da un vettore. È qui che devo sbarazzarmi delle colonne che hanno nomi duplicati (già presenti in dataframe). Questa è la natura dei dati sottostanti, a volte ha dups, a volte no, non ho alcun controllo sulla sua creazione.
Risposte
È questo qualcosa che stai cercando (non ero sicuro al 100% dalla tua descrizione - se questo non è quello che vuoi, aggiorna la domanda con un esempio):
julia> df = DataFrame([zeros(4,3) ones(4,5)])
4×8 DataFrame
│ Row │ x1 │ x2 │ x3 │ x4 │ x5 │ x6 │ x7 │ x8 │
│ │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │
├─────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ 1 │ 0.0 │ 0.0 │ 0.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │
│ 2 │ 0.0 │ 0.0 │ 0.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │
│ 3 │ 0.0 │ 0.0 │ 0.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │
│ 4 │ 0.0 │ 0.0 │ 0.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │ 1.0 │
julia> DataFrame(unique(last, pairs(eachcol(df))))
4×2 DataFrame
│ Row │ x1 │ x4 │
│ │ Float64 │ Float64 │
├─────┼─────────┼─────────┤
│ 1 │ 0.0 │ 1.0 │
│ 2 │ 0.0 │ 1.0 │
│ 3 │ 0.0 │ 1.0 │
│ 4 │ 0.0 │ 1.0 │
MODIFICARE
Per deduplicare i nomi delle colonne utilizzare l' makeuniqueargomento parola chiave:
julia> DataFrame(rand(3,4), [:x, :x, :x, :x], makeunique=true)
3×4 DataFrame
│ Row │ x │ x_1 │ x_2 │ x_3 │
│ │ Float64 │ Float64 │ Float64 │ Float64 │
├─────┼───────────┼──────────┼──────────┼───────────┤
│ 1 │ 0.410494 │ 0.775563 │ 0.819916 │ 0.0520466 │
│ 2 │ 0.0503997 │ 0.427499 │ 0.262234 │ 0.965793 │
│ 3 │ 0.838595 │ 0.996305 │ 0.833607 │ 0.953539 │
MODIFICA 2
Quindi sembra che tu abbia accesso ai nomi delle colonne quando crei un data frame. In questo caso farei:
julia> mat = [ones(3,1) zeros(3,2)]
3×3 Array{Float64,2}:
1.0 0.0 0.0
1.0 0.0 0.0
1.0 0.0 0.0
julia> cols = ["a", "b", "b"]
3-element Array{String,1}:
"a"
"b"
"b"
julia> df = DataFrame(mat, cols, makeunique=true)
3×3 DataFrame
│ Row │ a │ b │ b_1 │
│ │ Float64 │ Float64 │ Float64 │
├─────┼─────────┼─────────┼─────────┤
│ 1 │ 1.0 │ 0.0 │ 0.0 │
│ 2 │ 1.0 │ 0.0 │ 0.0 │
│ 3 │ 1.0 │ 0.0 │ 0.0 │
julia> select!(df, unique(cols))
3×2 DataFrame
│ Row │ a │ b │
│ │ Float64 │ Float64 │
├─────┼─────────┼─────────┤
│ 1 │ 1.0 │ 0.0 │
│ 2 │ 1.0 │ 0.0 │
│ 3 │ 1.0 │ 0.0 │