Formula AIC/AICc/BIC in R per GLM

Aug 23 2020

Sto cercando di verificare di aver compreso come R calcola la statistica AIC, AICc (AIC corretto) e BIC per un glm()oggetto modello (in modo da poter eseguire gli stessi calcoli sugli revoScaleR::rxGlm()oggetti, in particolare l'AICc, che non è disponibile per impostazione predefinita )

Avevo capito che questi erano definiti come segue:

let p= numero di parametri del modello

let n= numero di punti dati

AIC  = deviance + 2p
AICc = AIC + (2p^2 + 2p)/(n-p-1)
BIC  = deviance + 2p.log(n)

Quindi ho provato a replicare questi numeri e confrontarli con le corrispondenti chiamate di funzione R. Non ha funzionato:

library(AICcmodavg) # for the AICc() function

data(mtcars)

glm_a1 <- glm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb,
              data = mtcars,
              family = gaussian(link = "identity"),
              trace = TRUE)

summary(glm_a1)

n   <- nrow(glm_a1$data) # 32
p   <- glm_a1$rank # 11
dev <- glm_a1$deviance# 147.49

my_AIC  <- dev + 2 * p
my_AICc <- my_AIC + (2 * p^2 + 2 * p)/(n - p - 1)
my_BIC  <- dev + 2 * p * log(n)

AIC(glm_a1) # 163.71
my_AIC # 169.49

AICc(glm_a1) # 180.13 (from AICcmodavg package)
my_AICc # 182.69

BIC(glm_a1) # 181.30
my_BIC # 223.74

Usando debug(AIC)posso vedere che il calcolo è diverso. Si basa su 12 parametri (uno in più per il parametro di dispersione/scala stimato?). Anche la verosimiglianza logaritmica si ottiene utilizzando logLik()which riporta a number -69.85, il che mi suggerisce che la devianza del modello sarebbe -2*-69.85 = 139.71(cosa che non è).

Qualcuno sa cosa ho fatto di sbagliato per favore? Grazie.

Risposte

4 AbdessabourMtk Aug 23 2020 at 02:43

nella paginaextractAIC del manuale

Dove :

  • L è la verosimiglianza e edf i gradi di libertà equivalenti (cioè il numero di parametri per i normali modelli parametrici) dell'adattamento.
  • Per i modelli lineari generalizzati (cioè per lm, aov e glm), -2log L è la devianza, come calcolata da deviance(fit).
  • k = 2 corrisponde al tradizionale AIC, utilizzando k = log(n) si ottiene invece il BIC (Bayes IC).

così

Modifiche successive alla discussione nei commenti e all'input di @user20650

  • glm_a1$ranksrestituisce il numero del parametro adattato senza tener conto della varianza adattata utilizzata nelle famiglie gaussiane.

  • ?glmstati

    devianza: fino a una costante, meno il doppio della probabilità logaritmica massimizzata. Dove ragionevole, la costante viene scelta in modo che un modello saturo abbia devianza zero.

    Ecco perchè-2*logLik(glm_a1) - deviance(glm_a1) = 7.78 > 0

  • summary(glm_a1)restituisce la riga seguente Dispersion parameter for gaussian family taken to be 7.023544approssimativamente la differenza tra -2 log di verosimiglianza e la devianza.


library(AICcmodavg)
#> Warning: package 'AICcmodavg' was built under R version 3.6.2
#> Warning: no function found corresponding to methods exports from 'raster' for:
#> 'wkt'

data(mtcars)

glm_a1 <- glm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb,
              data = mtcars,
              family = gaussian(link = "identity"),
              trace = TRUE)
#> Deviance = 147.4944 Iterations - 1
#> Deviance = 147.4944 Iterations - 2

(loglik <- logLik(glm_a1))
#> 'log Lik.' -69.85491 (df=12)

# thus the degrees of freedom r uses are 12 instead of 11

n   <- attributes(loglik)$nobs # following user20650 recommendation 
p   <- attributes(loglik)$df # following user20650 recommendation
dev <- -2*as.numeric(loglik)
my_AIC  <- dev + 2 * p
my_AICc <- my_AIC + (2 * p^2 + 2 * p)/(n - p - 1)
my_BIC  <- dev +  p * log(n)

BIC(glm_a1) 
#> [1] 181.2986
my_BIC 
#> [1] 181.2986
AIC(glm_a1)
#> [1] 163.7098
my_AIC 
#> [1] 163.7098
AICc(glm_a1)
#> [1] 180.1309
my_AICc
#> [1] 180.1309
Alan Aug 23 2020 at 16:55

Funzione per calcolare queste quantità per un rxGlm()oggetto coerente con il trattamento di glm()(aggiustamento per la differenza di devianza "fino a una costante"):

wrc_information_criteria <- function(rx_glm) # an object created by rxGlm()
{

  # add 1 to parameter count for cases where the GLM scale parameter needs to be estimated (notably Gamma/gaussian)
  
  extra_parameter_flag <- case_when(
    rx_glm$family$family == "gaussian" ~ 1,
    rx_glm$family$family == "Gamma" ~ 1,
    rx_glm$family$family == "poisson" ~ 0,
    rx_glm$family$family == "binomial" ~ 0,
    TRUE ~ 999999999
  )
  
  n   <- rx_glm$nValidObs
  p   <- rx_glm$rank + extra_parameter_flag 
  dev <- rx_glm$deviance
  
  cat("\n")
  cat("n       :", n, "\n")
  cat("p       :", p, "\n")
  cat("deviance:", dev, "\n")
  
  AIC  <- dev + 2 * p
  AICc <- AIC + (2 * p^2 + 2 * p)/(n - p - 1)
  BIC  <- dev + p * log(n)
  
  # make a constant adjustment to AIC/AICc/BIC to give consistency with R's built in AIC/BIC functions applied to glm objects
  # can do this because rxGlm() supplies AIC already (consistent with R/glm()) - as long as computeAIC = TRUE in the function call
  
  deviance_constant_adjustment <- rx_glm$aic[1] - AIC
  
  AIC  <- AIC  + deviance_constant_adjustment
  AICc <- AICc + deviance_constant_adjustment
  BIC  <- BIC  + deviance_constant_adjustment
  
  cat("\n")  
  cat("AIC: ", AIC , "\n")
  cat("AICc:", AICc, "\n")
  cat("BIC: ", BIC , "\n")
  
}

Proviamolo...

data(mtcars)

glm_a1 <- glm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb,
              data = mtcars,
              family = gaussian(link = "identity"),
              trace = TRUE)

glm_b1 <- rxGlm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb,
                data = mtcars,
                family = gaussian(link = "identity"),
                verbose = 1,
                computeAIC = TRUE)

AIC(glm_a1)
AICc(glm_a1)
BIC(glm_a1)

wrc_information_criteria(glm_b1) # gives same results for glm_b1 as I got for glm_a1