Pattern inaspettatamente semplici per le determinanti di alcune matrici
Modifica: "Spoiler"
Dato che è una domanda piuttosto prolissa, ecco un rapido spoiler ... Perché è vero quanto segue?
$$\det \begin{pmatrix} 0 & 1 & 2\\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} =\det \begin{pmatrix} 0 & 1 & 2 & 0 & 1 & 2\\ 1 & 0 & 1 & 2 & 0 & 1\\ 2 & 1 & 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 & 1 & 2 \\ 1 & 0 & 2 & 1 & 0 & 1 \\ 2 & 1 & 0 & 2 & 1 & 0\end{pmatrix} = \det \begin{pmatrix} 0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 1\\ 2 & 1 & 0 & 1 & 2 & 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 & 1 & 2 & 0 & 1 & 2\\ 1 & 0 & 2 & 1 & 0 & 1 & 2 & 0 & 1\\ 2 & 1 & 0 & 2 & 1 & 0 & 1 & 2 & 0 \\ 0& 2 & 1 & 0 & 2 & 1 & 0 & 1 & 2 \\ 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 1 \\ 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0\end{pmatrix} = \dots $$
Considera la matrice $$A=\begin{pmatrix} 0 & 1 & 2\\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}\,.$$ Lo si può facilmente valutare $\det A = 4$.
Più in generale è facile mostrare (tramite calcolo diretto) quel dato $x\in\mathbb{R}$ e definendo $$A(x) = \begin{pmatrix} x-1 & x & x+1 \\ x & x-1 & x \\ x+1 & x & x-1\end{pmatrix}$$ poi $\det A(x) = 4x$.
Il fatto interessante è che queste matrici possono essere "espanse" in modo tale che il determinante sia invariante. Inoltre, per una classe più ampia di matrici sembrano esserci alcuni pattern regolari "semplici" riguardanti il determinante.
Introduzione di alcune notazioni ...
Per prima cosa, devo introdurre alcune annotazioni. Permettere$\mathbf{c} = \{c_1,c_2\dots c_n\}$. Denoterò$T(\mathbf{c})$ il $n\times n$ matrice Toeplix simmetrica le cui diagonali principale e superiore sono date dai coefficienti $c_1\dots c_n$. Intendo qualcosa di simile$$T(\{c_1,c_2,c_3,c_4\}) = \begin{pmatrix} c_1 & c_2 & c_3 & c_4\\c_2 & c_1 & c_2 & c_3 \\ c_3 & c_2 & c_1 & c_2 \\ c_4 & c_3 & c_2 & c_1 \end{pmatrix}\,.$$
Se chiamiamo $\mathbf{v}(x) = \{x-1,x,x+1\}$, poi $A(x) = T(\mathbf{v}(x))$.
Infine, dato un file $n$-dimensionale vettoriale $\mathbf{c} = \{c_1\dots c_n\}$, Chiamerò $\mathbf{c}^k$ il $(k\cdot n)$-vettore dimensionale ottenuto unendo insieme $k$ copie di $\mathbf{c}$. Per esempio$$\{c_1,c_2,c_3,c_4\}^3 = \{c_1,c_2,c_3,c_4,c_1,c_2,c_3,c_4,c_1,c_2,c_3,c_4\}\,.$$
La domanda principale
L'ho affermato all'inizio $\det A(x) = 4x$. Con la notazione sopra,$\det T(\mathbf{v}(x)) = 4x$. In realtà sembra essere vero (almeno per quello che ho provato con Mathematica) che per tutto intero positivo$k$ $$\det T(\mathbf{v}^k(x)) = 4x\,.$$ Immagino che questo risultato possa essere dimostrato mediante induzione $k$, ma sembra essere un po 'doloroso. Mi aspetterei una prova semplice e chiara per quello che sembra essere un risultato così chiaro.
Qualche idea su cosa sta succedendo e perché i determinanti sono così semplici?
Andando un po 'oltre ...
Avendo notato che le cose erano così semplici per $\mathbf{v}(x)=\{x-1,x,x+1\}$, la prima cosa che ho provato è di cambiare leggermente $\mathbf{v}$. Consideriamo ora$T(\{x-2,x-1,x,x+1,x+2\}^k)$. Sfortunatamente in questo caso le cose si complicano molto. Per$k=1$ il determinante è $16 x$. Ma poi per$k=2$ suo $113288 x$, per $k=3$ $65157184 x$e così via. Le cose sono chiaramente molto più complicate qui.
Ma ... definiamo $\mathbf{w}(x) = \{x+2,x-1,x,x+1,x-2\}$. Quindi la sequenza dei determinanti sembra essere molto regolare.
\begin{align} &\det T(\mathbf{w}(x)) = 16 x\\ &\det T(\mathbf{w}^2(x)) = -8 x\\ &\det T(\mathbf{w}^3(x)) = 0\\ &\det T(\mathbf{w}^4(x)) = -8 x\\ &\det T(\mathbf{w}^5(x)) = 16 x\\ &\det T(\mathbf{w}^6(x)) = -8 x\\ &\det T(\mathbf{w}^7(x)) = 0\\ &\det T(\mathbf{w}^8(x)) = -8 x \end{align}e così via. Quindi c'è uno schema chiaro nella dipendenza da$k$: $$\{16, -8, 0, -8, 16, -8, 0, -8, 16, -8, 0, -8, 16, -8, 0, -8, 16, -8, 0, -8,\dots\}\,.$$
Quindi possiamo guardare $T(\{x-3,x+2,x-1,x,x+1,x-2,x+3\})$ e di nuovo c'è uno schema: $$\{64, 12, 4, 0, 4, 12, 64, 12, 4, 0, 4, 12, 64, 12, 4, 0, 4, 12, 64, \dots\}\,.$$
E ancora per $T(\{x+4,x-3,x+2,x-1,x,x+1,x-2,x+3,x-4\})$ un nuovo modello: $$\{256, -16, 0, -16, 0, -16, 0, -16, 256, -16, 0, -16, 0, -16, 0, -16, 256, -16, 0, -16,\dots\}\,.$$
Scommetterei sull'esistenza di una semplice spiegazione per questi schemi, ma per ora non ne ho davvero la più pallida idea. Qualche idea?
Risposte
Mi concentrerò su $\mathbf v$, ma la spiegazione vale per $\mathbf w$anche. Nota che possiamo scrivere$$ T(\mathbf v^k(x)) = xJ + T(\mathbf v^k(0)), $$ dove $J$ è la matrice di tutto $1$S. Questo è,$J = \mathbf e \mathbf e^T$, dove $\mathbf e = (1,\dots,1)^T$. Nota che in tutti i casi che consideri,$T_0$ha una somma di righe pari a zero e quindi non può essere invertibile. Ora, con il lemma determinante della matrice , lo troviamo$$ \det[T(\mathbf v^k(x))] = \det(T_0) + (\mathbf e^T\operatorname{adj}(T_0) \mathbf e) \cdot x = (\mathbf e^T\operatorname{adj}(T_0) \mathbf e) \cdot x. $$ In altre parole, sarà sempre uguale a una costante moltiplicata per $x$.
In effetti, possiamo dire un po 'di più: nel caso in cui $\operatorname{adj}(T_0) \neq 0$, $T_0$ deve essere una matrice simmetrica il cui kernel è attraversato da $\mathbf e$. Ne consegue che possiamo scrivere$$ \operatorname{adj}(T_0) = \alpha \frac{\mathbf e\mathbf e^T}{\mathbf e^T\mathbf e} = \frac{\alpha}{kn} \mathbf e\mathbf e^T, $$ dove $\alpha$ è il prodotto degli autovalori diversi da zero di $T_0$. Per un calcolo diretto, lo vediamo$\alpha/(kn)$è la voce in basso a destra dell'adjugate. Secondo la formula del cofattore per l'adjugato, questo è il determinante della matrice di Toeplitz simmetrica ottenuta cancellando l'ultima riga e colonna di$T_0$.
Una volta stabilito ciò, lo notiamo $$ (\mathbf e^T\operatorname{adj}(T_0) \mathbf e) = \frac{\alpha}{kn} (\mathbf e^T\mathbf e \mathbf e^T \mathbf e) = \alpha kn, $$ In modo che la nostra formula complessiva diventi $T(\mathbf v^k(x)) = (\alpha kn)\cdot x$.
Per qualsiasi vettore $\mathbf v = (v_1,\dots,v_n)$, denotano il vettore troncato $[\mathbf v] = (v_1,\dots,v_{n-1})$. Con quanto sopra stabilito, abbiamo ridotto le tue osservazioni di regolarità al calcolo delle determinanti di$\det T([\mathbf v^k(0)])$ e $\det T([\mathbf w^k(0)])$.