Risolvere analiticamente un'equazione con integrale definito

Aug 22 2020

Data una distribuzione di probabilità$p(u)$, devo risolvere il seguente sistema dove$\gamma,\; \alpha \in \mathbb{R}$sono le incognite:\begin{align} 1=\int_{-\infty}^{\infty} p(u) \frac{-1}{\gamma-(u-x+\alpha \tau)^{2}}\mathrm{d}u \end{align} \begin{align} \alpha=\int_{-\infty}^{\infty} p(u) \frac{(u-x+\alpha \tau)}{\gamma-(u-x+\alpha \tau)^{2}} \end{align}

Mi interessa solo un'espressione per$\alpha$, e ho risolto questo sistema numericamente.

C'è un modo per semplificare queste equazioni per un generale $p(u)$ ?

Se no, se scegliamo$p(u)$per essere una distribuzione semplice (bimodale, uniforme per esempio), è allora possibile semplificare queste equazioni senza utilizzare metodi numerici?

($x$è un numero reale e$\tau$è un parametro tale che$-1<\tau<1$e$\tau \neq 0$).

Qualsiasi commento, consiglio o riferimento a un libro è sempre apprezzato, grazie mille.

Modificare :

L'equazione originale ha una dipendenza da un termine aggiuntivo$y\in\mathbb{R}$:

\begin{align} 1=\int_{-\infty}^{\infty} p(u) \frac{-1}{\gamma-(u-x+\alpha \tau)^{2}-\frac{y^2}{\left(\tau-1\right)^{2}}}\mathrm{d}u \end{align} \begin{align} \alpha=\int_{-\infty}^{\infty} p(u) \frac{(u-x+\alpha \tau)}{\gamma-(u-x+\alpha \tau)^{2}-\frac{y^2}{\left(\tau-1\right)^{2}}} \end{align}L'ho notato per qualsiasi distribuzione$p(u)$la mia soluzione è indipendente da$y$(Non so perché) quindi ho pensato a quell'impostazione$y=0$renderebbe le cose più facili.

Risposte

2 YuriNegometyanov Aug 27 2020 at 11:05

Consideriamo le equazioni integrali date sotto forma di

$$\left\{\begin{align} &1 = \int\limits_{-\infty}^\infty \dfrac{1}{(u-a)^2 - b^2}\,p(u)\text{ d}u\\ &\alpha = \int\limits_{-\infty}^\infty \dfrac{a-u}{(u-a)^2-b^2}\,p(u)\text{ d}u, \end{align}\right.\tag1$$dove$$a=x-\alpha\tau,\quad b^2 = \gamma-\dfrac {y^2}{(r-1)^2}.\tag2$$

Quindi$$\left\{\begin{align} &b+\alpha = \int\limits_{-\infty}^\infty \dfrac{b+a-u}{(u-a)^2 - b^2}\,p(u)\text{ d}u = \int\limits_{-\infty}^\infty p(u)\dfrac{\text{ d}u}{a-u-b}\\ &b-\alpha = \int\limits_{-\infty}^\infty \dfrac{b+u-a}{(u-a)^2-b^2}\,p(u)\text{ d}u = \int\limits_{-\infty}^\infty p(u)\dfrac{\text{ d}u}{u-a-b}, \end{align}\right.\tag3$$

Gli integrali ottenuti consentono una scelta più ricca degli ulteriori passaggi. Dettaglio della funzione$p(u)$sembra necessario.

$\color{green}{\mathbf{Case\ p(u) = \frac12\delta(u+1)-\frac12\delta(u-1)}}.$

Via (1).

Formule$(1)$dare il sistema

$$\left\{\begin{align} &1 = \frac12\dfrac1{(u-a)^2 - b^2}\bigg|_{-1}^1 = \frac12\dfrac1{(a-1)^2 - b^2}-\frac12\dfrac1{(a+1)^2 - b^2}\\ &\alpha = \frac12\dfrac{a-u}{(u-a)^2-b^2}\bigg|_{-1}^1 = \frac12\dfrac{a-1}{(a-1)^2-b^2}-\frac12\dfrac{a+1}{(a+1)^2-b^2}, \end{align}\right.$$

$$ \begin{cases} v=u-2\\[4pt] (a-1)u-(a+1)v = 2\alpha\\ u = \dfrac1{(a-1)^2 - b^2}\\ v = \dfrac{a+1}{(a+1)^2-b^2} \end{cases}\Rightarrow \begin{cases} u = a-\alpha+1\\[4pt] v = a-\alpha-1\\ a-\alpha+1 = \dfrac1{(a-1)^2 - b^2}\\ a-\alpha-1 = \dfrac{1}{(a+1)^2-b^2}, \end{cases} $$ \begin{cases} (a-1)^2 - b^2 = \dfrac1{a-\alpha+1}\\ (a+1)^2 - b^2 = \dfrac1{a-\alpha -1 }, \end{casi}

$$2a(a-\alpha)^2-2a-1 = 0,\tag4$$cioè$\alpha$non dipende da$b.$

Permettere$$p=\dfrac\tau{\tau+1},\quad q=\dfrac x{\tau+1},\quad z= a-\alpha = x-(\tau+1)\alpha,\tag5$$poi$$a=z+\alpha = z + \frac{x-z}{\tau+1} = \dfrac x{\tau+1}+ \dfrac\tau{\tau+1}z = p z + q,$$ $$\alpha = a-z = (p-1)$$e da$(4)$dovrebbe$$2(pz+q)(z^2-1)-1=0,$$con la soluzione $$z = \frac1{6p}\left(r - \frac{12 p^2 + 4 q^2}r + 2 q\right),\tag5$$dove$$r = \sqrt[3]{\sqrt{(-72 p^2 q - 54 p^2 + 8 q^3)^2 - (12 p^2 + 4 q^2)^3} - 72 p^2 q - 54 p^2 + 8 q^3}.\tag6$$

Notare che$(5)$dà la soluzione corretta anche se$p$è complesso.

Via (3).

Formule$(3)$dare il sistema

$$\left\{\begin{align} &b+\alpha = \frac12\dfrac1{a-u-b}\bigg|_{-1}^1 = \frac12\dfrac1{a-1-b}-\frac12\dfrac1{a+1-b} = \dfrac 1{(a-b)^2-1}\\ &b-\alpha = \frac12\dfrac1{u-a-b}\bigg|_{-1}^1 = \frac12\dfrac1{1-a-b}+\frac12\dfrac1{1+a+b} = \dfrac1{1-(a+b)^2}, \end{align}\right.$$

$$ \begin{cases} (\alpha+b)(a^2-2ab+b^2-1) = 1\\[4pt] (\alpha-b)(a^2+2ab+b^2-1) = 1 \end{cases}\Rightarrow \begin{cases} \alpha(-2ab)+b(a^2+b^2-1) = 0\\[4pt] \alpha(a^2+b^2-1)+b(-2ab) = 1, \end{cases} $$$$ \begin{cases} (\alpha^2-b^2)(-2ab) = -b\\ (\alpha^2-b^2)(a^2+b^2-1) = \alpha\\ \end{cases} \begin{cases} 2a(\alpha^2-b^2) = 1\\ a^2+b^2-1 = 2\alpha a \end{cases} $$

$$2a(\alpha^2+a^2 - 2\alpha a -1) =1$$con la stessa equazione$(4).$