Spiegazione intuitiva del perché "operatore ombra" $\frac D{e^D-1}$ collega i logaritmi con le funzioni trigonometriche?

Jan 01 2021

Considera l'operatore $\frac D{e^D-1}$ che chiameremo "ombra":

$$\frac {D}{e^D-1}f(x)=\frac1{2 \pi }\int_{-\infty }^{+\infty } e^{-iwx}\frac{-iw}{e^{-i w}-1}\int_{-\infty }^{+\infty } e^{i t w} f(t) \, dt \, dw$$

Gli integrali qui dovrebbero essere intesi come trasformate di Fourier.

Ora, intuitivamente, perché quanto segue?

$$\left.\frac {D_x}{e^{D_x}-1} \left[\frac1\pi\ln \left(\frac{x+1/2 +\frac{z}{\pi }}{x+1/2 -\frac{z}{\pi }}\right)\right]\right|_{x=0}=\tan z$$

Ci sono altri esempi in cui l'ombra converte le funzioni trigonometriche in trigonometriche inverse, i logaritmi in esponenti, ecc:

$$\left.\frac {D_x}{e^{D_x}-1} \left[\frac1{\pi }\ln \left(\frac{x+1-\frac{z}{\pi }}{x+\frac{z}{\pi }}\right)\right]\right|_{x=0}=\cot z$$

Risposte

26 TerryTao Jan 02 2021 at 04:52

Questa è fondamentalmente una versione leggermente trasformata dell'espansione della frazione parziale cotangente di Eulero $$ \pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^\infty \frac{1}{z-n} + \frac{1}{z+n}$$ (il derivato logaritmico della sua famosa formula del prodotto sinusoidale $\frac{\sin \pi z}{\pi z} = \prod_{n=1}^\infty \big(1-\frac{z^2}{n^2}\big)$). Incastrando le serie, è possibile riscriverlo come$$ \pi \cot(\pi z) = \sum_{n=0}^\infty \frac{1}{z-n-1} + \frac{1}{z+n}.$$ Secondo il teorema di Taylor, $e^{nD_x}$ è l'operazione di traduzione di $n$, quindi formalmente per serie geometriche abbiamo $$ \left.\frac{1}{1-e^{D_x}} f\, \right|_{x=0} = \sum_{n=0}^\infty \left.e^{nD_x} f\right|_{x=0} = \sum_{n=0}^\infty f(n)$$ (che incidentalmente aiuta a spiegare la formula di Eulero-Maclaurina) e così via $$ \pi \cot(\pi z) = \left.\frac{1}{1-e^{D_x}} \left(\frac{1}{z-x-1} + \frac{1}{z+x}\right) \right|_{x=0}$$ o in modo equivalente $$ \pi \cot(\pi z) = - \left.\frac{D_x}{1-e^{D_x}} \ln \frac{x+z}{x+1-z} \right|_{x=0}.$$ Questo dà le tue identità dopo alcuni semplici riarrangiamenti (e sostituendo $z$ con entrambi $z/\pi$ o $z/\pi + 1/2$).

La ragione principale per l'identità della frazione parziale di Eulero è che i poli ei residui della funzione cotangente sono facilmente identificati e calcolati. Il motivo per cui possono essere compressi in un'espressione che coinvolge l'operatore di somma$\frac{1}{1-e^{D_x}}$è che questi poli e residui godono di una invarianza di traslazione, che alla fine deriva dalla periodicità della funzione cotangente. Immagino che ci siano identità simili per il Weierstrass$\wp$ funzione, che è doppiamente periodica con un comportamento polare molto specifico.

9 TomCopeland Jan 02 2021 at 08:48

L'op $$T_x = \frac{D_x}{e^{D_x}-1} = e^{b.D_x},$$

dove $(b.)^n = b_n$sono i numeri di Bernoulli, è (segni mod) spesso indicato come l' operatore Todd (forse originariamente dato quel nome da Hirzebruch, che lo usò per costruire la sua classe caratteristica Todd).

Ha una proprietà discretizzante (o derivazionale) che può essere espressa nei seguenti modi utili

$$f(x) = T_x T_x^{-1} f(x) = \frac{D}{e^D-1} \frac{e^D-1}{D} f(x) = T_x \int_{x}^{x+1} f(t) dt$$

$$ = e^{b.D} \;\int_{x}^{x+1} f(t) dt = \int_{b.+x}^{b.+x+1} f(t) dt =\int_{B.(x)}^{B.(x)+1} f(t) dt$$

$$ = F(B.(x)+1) - F(B.(x)) = F(B.(x+1)) - F(B.(x)) = D_x \; F(x),$$

dove

$$B_n(x) = (b.+x)^n = \sum_{k=0}^n \binom{n}{k} \; b_n \; x^{n-k}$$

sono i celebri polinomi di Appell Bernoulli, con l'egf $e^{B.(x)t}= e^{(b.+x)t} = \frac{t}{e^t-1}e^{xt}$, e $F(x)$ è l'integrale / primitivo indefinito di $f(x)$. L'ultima uguaglianza illustra la proprietà derivazionale dei polinomi di Bernoulli e li definisce completamente.

Questo porta a

$$\sum_{k=0}^n f(x+k) = T \; \int_{x}^{x+n+1} f(t) dt $$

$$ = e^{b.D} \; \int_{x}^{x+n+1} f(t) dt = \int_{B.(x)}^{B.(x+n+1)} f(t) dt$$

$$ = F(B.(x+n+1)) - F(B.(x)),$$

e, in particolare, la stringa delle relazioni

$$\sum_{k=0}^n (x+k)^s =T_x \; \int_{x}^{x+n+1} t^{s} dt $$

$$= e^{b.D} \int_{x}^{x+n+1} t^{s} dt = \int_{B.(x)}^{B.(x+n+1)} t^s dt$$

$$ = T_x \; \frac{(x+n+1+)^{s+1} -x^{s+1}}{s+1} = e^{b.D} \frac{(x+n+1+)^{s+1} -x^{s+1}}{s+1}$$

$$ = \frac{(B.(x+1+n))^{s+1} -(B.(x))^{s+1}}{s+1} = \frac{B_{s+1}(x+1+n) - B_{s+1}(x)}{s+1}$$

$$ = \sum_{k=0}^n \frac{B_{s+1}(x+1+k) - B_{s+1}(x+k)}{s+1}$$

$$ = \sum_{k=0}^n \frac{(B.(x+1+k))^{s+1} - (B.(x+k))^{s+1}}{s+1}$$

$$ = \sum_{k=0}^n D_x \; \frac{(x+k)^{s+1}}{s+1}.$$

Se prendi in modo appropriato il limite $s \to -1$, arrivi a una relazione con il logaritmo naturale da cui, insieme alle espansioni in serie delle funzioni trigonometriche nella risposta di Terry Tao, puoi estrarre le tue formule particolari.

Per un'applicazione illustrativa più sofisticata della formula di discretizzazione, vedere l'Eqn. 1, "la formula Khovanskii-Pukhlikov, la controparte combinatoria della formula Hirzebruch-Riemann-Roch (HRR) per una varietà torica liscia X con un divisore molto ampio D ..." a pagina 2 del "$T_y$- operatore su integrali su politopi reticolari "di Goda, Kamimura e Ohmoto.

Nota anche la sequenza inversa ombrale dei polinomi di Bernoulli, i polinomi di potenza di Appell

$$\hat{B}_n(x) = \frac{(x+1)^{n+1}-x^{n+1}}{n+1},$$

con il .egf $\frac{e^t-1}{t}\; e^{xt}$, è definito anche dall'inversione compositiva ombrale

$$B_n(\hat{B}.(x)) = x^n = \hat{B}_n(B.(x)),$$

così il

  1. proprietà derivazionale dei polinomi di Appell Bernoulli

$$ \frac{(B_.(x)+1)^{n+1}}{n+1} - \frac{(B.(x))^{n+1}}{n+1} = \frac{(b.+x+1)^{n+1} - (b.+x)^{n+1}}{n+1}$$

$$ = \frac{B_{n+1}(x+1) - B_{n+1}(x)}{n+1} = \hat{B}_n(B.(x)) = x^n = D \; \frac{x^{n+1}}{n+1},$$

  1. relazione reciproca degli egf che definiscono i momenti della coppia inversa di sequenze polinomiali di Appell

$$B(t) =e^{b.t}= \frac{t}{e^t-1},$$

$$\hat{B}(t) = e^{\hat{b}.t}=\frac{e^t-1}{t}, $$

  1. reciprocità delle doppie operazioni

$$T= B(D) = \frac{D}{e^D-1} = e^{b.D},$$

$$T^{-1}= \hat{B}(D) = \frac{e^D-1}{D} = e^{\hat{b}.D},$$

  1. duplici proprietà polinomiali generatrici delle ops

$$T \; x^n = \frac{D}{e^D-1} \; x^n = e^{b.D} \; x^n = (b. + x)^n = B_n(x), $$

$$ T^{-1} \; x^n = \frac{e^D-1}{D} \; x^n = e^{\hat{b.}D} x^n = (\hat{b.}+x)^n = \hat{B}_n(x),$$

  1. relazione inversa compositiva ombrale dei doppi insiemi di polinomi

$$ B_n(\hat{B}.(x)) = T^{-1} \; T \; x^n = x^n = T \; T^{-1} \; x^n = \hat{B}_n(B.(x)),$$

  1. e la proprietà di discretizzazione dell'operatore di Todd

$$ x^n = T \; T^{-1} x^n = T \; \int_{x}^{x+1} t^n \; dt$$

$$ = T \frac{(x+1)^{n+1} - x^{n+1}}{n+1}$$

$$ =\frac{(B.(x)+1)^{n+1} -(B.(x))^{n+1}}{n+1} = \hat{B}_n(B.(x))$$

sono tutti intimamente (e produttivamente) interconnessi, diversi aspetti di una dualità di Appell e possono essere generalizzati tramite la trasformata di Mellin.

Questa non è tutta la storia - le relazioni sono ancora più profonde attraverso l'algebra di Weyl, il commutatore Graves / Lie / Pincherle e le operazioni ladder - ma questa prospettiva porta già a proficue ulteriori esplorazioni. Ad esempio, otteniamo l'avvio nel limite come$n \to +\infty$ per la somma discretizzante una funzione zeta di Hurwitz modificata come la generalizzazione (interpolazione) dei polinomi di Bernoulli,

$$ B_{-s}(x) = s \; \zeta(s+1,x),$$

che eredita le proprietà di una sequenza di polinomi Appell.


L'equazione "ombra" è alquanto restrittiva poiché assume il FT di $f(x)$esiste, che non è una condizione necessaria per l'applicazione della proprietà discretizzante; ad esempio, notare la simile formula di Laplace trasformata Abel-Plana .

Con una diversa normalizzazione per il FT,

$$FT(f(x)) = \tilde{f}(\omega) = \int_{-\infty}^{\infty} e^{-i 2\pi \omega x} f(x) \; dx,$$

e

$$f(b.+x) = e^{b.D_x} f(x) = \frac{D_x}{e^{D_x}-1} \; f(x) = \frac{D_x}{e^{D_x}-1} FT^{-1}[\tilde{f}(\omega)]$$

$$ = \frac{D_x}{e^{D_x}-1} \; \int_{-\infty}^{\infty} e^{i 2\pi \omega x} FT[f(x)] \; d\omega = \int_{-\infty}^{\infty} e^{i 2\pi \omega x} \frac{i 2\pi \omega}{e^{i 2\pi \omega}-1} FT[f(x)] \; d\omega. $$

Caratterizzare l'azione dell'operatore di Todd usando piuttosto l' interpolazione della trasformata di Mellin alla Ramanujan / Hardy, fornisce un percorso alternativo e costruttivo alla funzione zeta di Hurwitz:

$$ B_{-s}(z) = (B.(z))^{-s} = (b.+z)^{-s} = e^{b.D_z} \; z^{-s}$$

$$ = e^{b.D_z} \int_{0}^{\infty} e^{-zt} \; \frac{t^{s-1}}{(s-1)!} \; dt$$

$$ = \int_{0}^{\infty} e^{-(b.+z)t} \; \frac{t^{s-1}}{(s-1)!} \; dt$$

$$ =\int_{0}^{\infty} e^{-B.(z)t} \; \frac{t^{s-1}}{(s-1)!} \; dt $$

$$ = \int_{0}^{\infty} \frac{-t}{e^{-t}-1} \; e^{-zt} \frac{t^{s-1}}{(s-1)!} \; dt = s \; \zeta(s+1,z).$$

Un'espansione in serie per la funzione Appell Bernoulli per tutti i reali o complessi $s$ e reale o complesso $z$ con $|z-1| < 1$ è dato dall'espansione binomiale ombrale

$$s \; \zeta(s+1,z) = B_{-s}(z)$$

$$ = (b.+z)^{-s} = (b. + 1 - 1 + z)^{-s} = (B.(1)+z-1)^{-s}$$

$$ = \sum_{n \geq 0} \binom{-s}{n} B_{-s-n}(1) \; (z-1)^n = \sum_{n \geq 0} \binom{-s}{n} (s+n) \; \zeta(s+n+1) \; (z-1)^n$$

dove

$$(b.+1)^{-s} = (B.(1))^{-s} = B_{-s}(1) = s \; \zeta(s+1,1) = s \; \zeta(s+1)$$

con $\zeta(s)$, la funzione zeta di Riemann.