評価する $\int _0^{\infty }\frac{\ln \left(1+x^3\right)}{x\left(1+x^2\right)}\:dx$
の評価を完了する方法 $$\int _0^{\infty }\frac{\ln \left(1+x^3\right)}{x\left(1+x^2\right)}\:dx$$ 私は積分を $$\int _0^{\infty }\frac{\ln \left(1+x^3\right)}{x}\:dx-\int _0^{\infty }\frac{\ln \left(1+x^3\right)}{1+x^2}\:dx$$ しかし、私は立ち往生しています、誰かが私にどのように進めるかについてのヒントを与えることができますか?
回答
注意
$$ \int _1^{\infty }\frac{\ln \left(1+x^3\right)}{x\left(1+x^2\right)}\:dx \overset{x\to\frac1x} = \int _0^{1}\frac{x\ln \left(1+x^3\right)}{1+x^2}\:dx - \int _0^{1}\frac{3x\ln x}{1+x^2}\:dx $$
次に
\begin{align} \int _0^{\infty }\frac{\ln \left(1+x^3\right)}{x\left(1+x^2\right)}\:dx & = \int _0^{1}\frac{\ln \left(1+x^3\right)}{x}\:dx - \int _0^{1}\frac{3x\ln x}{1+x^2}\:dx \\ & = \int _0^{1}\frac{\ln \left(1+x^3\right)}{x}\:dx +\frac32 \int _0^{1}\frac{\ln (1+x^2)}{x}\:dx \\ & = \frac13 \int _0^{1}\frac{\ln \left(1+t\right)}{t}\:dt +\frac34\int _0^{1}\frac{\ln (1+t)}{t}\:dt \\ & = \frac{13}{12} \int _0^{1}\frac{\ln (1+t)}{t}\:dt \\ &= \frac{13}{12}\cdot \frac{\pi^2}{12}= \frac{13\pi^2}{144} \end{align}
$\int _0^{1}\frac{\ln (1+t)}{t}\:dt=\frac{\pi^2}{12}$
ファインマンのトリックを使用します。
$$I(a)=\int _0^{\infty }\frac{\log \left(1+a^3x^3\right)}{x\left(1+x^2\right)}\:dx$$ $$I'(a)=\int _0^{\infty }\frac{3a^2x^2}{\left(1+x^2\right) \left(1+a x^3\right)}\,dx$$ 部分分数分解、被積分関数の書き込みを使用します $$\frac{a^2}{\left(a^2+1\right) (a x+1)}-\frac{3 \left(a^5 x+a^2\right)}{\left(a^2+1\right) \left(a^4-a^2+1\right) \left(x^2+1\right)}+\frac{(2 a^5-a^3) x-a^4+2 a^2}{\left(a^4-a^2+1\right) \left(a^2 x^2-a x+1\right)}$$ コンピューティング $I'(a)$ 非常に単純で、最終結果は次のとおりです。 $$I'(a)=\frac{2 \pi a}{\sqrt{3} \left(a^6+1\right)}+\frac{3 a^5 \log (a)}{a^6+1}+\frac{2 \pi a^3}{\sqrt{3} \left(a^6+1\right)}-\frac{3 \pi a^2}{2 \left(a^6+1\right)}$$
確かに、repectとの統合 $a$ 最も快適ではありませんが、すべてが限界で単純化されます $$J=\int_0^1 I'(a)\,da=\Big[\frac{1}{144} \left(36 \left(\text{Li}_2\left((-1)^{1/3}\right)+\text{Li}_2\left(-(-1)^{2/3}\right) \right)-53 \pi ^2\right) \Big] -\Big[-\frac{4 \pi ^2}{9} \Big]$$ $$J=-\frac{17 \pi ^2}{48}+\frac{4 \pi ^2}{9}=\frac{13 \pi ^2}{144}$$