証明 $\int_{0}^{1} \frac{\tanh^{-1}\sqrt{x(1-x)}}{\sqrt{x(1-x)}}dx=\frac{1}{3}(8C-\pi\ln(2+\sqrt{3}))$ シュリニヴァーサラマヌジャンのアイデンティティのために
ラマヌジャンは5000以上のエレガントな結果をもたらしたと思われますが、それらのかなりの数はまだ証明または反証されていません。
昨日のコメントセクションで
それを証明する $ \sum_{k=0}^\infty\frac1{2k+1}{2k \choose k}^{-1}=\frac {2\pi}{3\sqrt{3}} $
素晴らしいラマヌジャンのアイデンティティ $$S=\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}{2k \choose k}^{-1}=\frac{1}{3}(8C-\pi\ln(2+\sqrt{3}))~~~~(1)$$ 展示されましたが、Mathematicaもこれを提供します。
(1)を手作業で証明しようとする私の試み:
二項係数の逆数の積分表現に注意してください。 $${n \choose j}^{-1}=(n+1)\int_{0}^{1} x^j (1-x)^{n-j}~ dx~~~~(2)$$ $$S=\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}{2k \choose k}^{-1}= \int_{0}^{1} \sum_{k=0}^{\infty} \frac{[x(1-x)]^{k}}{(2k+1)} dx= \int_{0}^{1} \frac{\tanh^{-1}\sqrt{x(1-x)}}{\sqrt{x(1-x)}} dx~~~~(3)$$
問題は、この積分(3)を手作業で取得する方法です。
回答
ファインマンのトリックを試してみることができます。 \begin{align*} I&=\int _0^1\frac{\operatorname{arctanh} \left(\sqrt{x\left(1-x\right)}\right)}{\sqrt{x\left(1-x\right)}}\:dx\\[3mm] I\left(a\right)&=\int _0^1\frac{\operatorname{arctanh} \left(a\sqrt{x\left(1-x\right)}\right)}{\sqrt{x\left(1-x\right)}}\:dx\\[3mm] I'\left(a\right)&=\int _0^1\frac{1}{1-a^2x\left(1-x\right)}\:dx=\frac{4}{a\sqrt{4-a^2}}\arctan \left(\frac{a}{\sqrt{4-a^2}}\right)\\[3mm] \int _0^1I'\left(a\right)da&=4\underbrace{\int _0^1\frac{1}{a\sqrt{4-a^2}}\arctan \left(\frac{a}{\sqrt{4-a^2}}\right)\:da}_{t=\frac{a}{\sqrt{4-a^2}}}\\[3mm] I&=8\underbrace{\int _0^{\frac{1}{\sqrt{3}}}\frac{\arctan \left(t\right)}{4t\sqrt{1+t^2}}\:dt}_{t=\tan\left(x\right)}=2\int _0^{\frac{\pi }{6}}\frac{x\sec \left(x\right)}{\tan \left(x\right)}\:dx\\[3mm] &=2\int _0^{\frac{\pi }{6}}\frac{x}{\sin \left(x\right)}\:dx \end{align*}その積分は、Zackyによって、その結果の結果を使用して評価されています。$$\boxed{I=\int _0^1\frac{\operatorname{arctanh} \left(\sqrt{x\left(1-x\right)}\right)}{\sqrt{x\left(1-x\right)}}\:dx=\frac{\pi}{3}\ln(2-\sqrt 3) +\frac{8}{3}G}$$
ワイエルシュトラス置換を使用して、最後の積分を見つけることもできます。 \begin{align*} 2\int _0^{\frac{\pi }{6}}\frac{x}{\sin \left(x\right)}\:dx&=4\underbrace{\int _0^{2-\sqrt{3}}\frac{\arctan \left(t\right)}{t}\:\:dt}_{\operatorname{IBP}}\\[3mm] &=\frac{\pi }{3}\ln \left(2-\sqrt{3}\right)-4\underbrace{\int _0^{2-\sqrt{3}}\frac{\ln \left(t\right)}{1+t^2}\:dt}_{t=\tan\left(x\right)}\\[2mm] &=\frac{\pi }{3}\ln \left(2-\sqrt{3}\right)-4\int _0^{\frac{\pi }{12}}\ln \left(\tan \left(x\right)\right)\:dx\\[3mm] &=\frac{\pi }{3}\ln \left(2-\sqrt{3}\right)+8\sum _{k=1}^{\infty }\frac{1}{2k-1}\int _0^{\frac{\pi }{12}}\cos \left(2\left(2k-1\right)x\right)\:dx\\[3mm] &=\frac{\pi }{3}\ln \left(2-\sqrt{3}\right)+4\sum _{k=1}^{\infty }\frac{\sin \left(\frac{\pi }{6}\left(2k-1\right)\right)}{\left(2k-1\right)^2}\\[3mm] &=\frac{\pi }{3}\ln \left(2-\sqrt{3}\right)+\frac{8}{3}\sum _{k=1}^{\infty }\frac{\left(-1\right)^{k+1}}{\left(2k-1\right)^2}\\[3mm] &=\frac{\pi }{3}\ln \left(2-\sqrt{3}\right)+\frac{8}{3}G \end{align*}
注意
$\int_{0}^{1} \frac{\tanh^{-1}\sqrt{x(1-x)}}{\sqrt{x(1-x)}}dx \overset{x=\sin^2t} =\int_0^{\pi/2} 2 \tanh^{-1}\frac{\sin 2t}2dt = \int_0^{\pi/2}\ln\left(\frac{1+\frac{\sin2t}2}{1-\frac{\sin2t}2}\right)dt $
積分を解く $\int_0^{\pi/2}\log\left(\frac{2+\sin2x}{2-\sin2x}\right)\mathrm dx$ $=\frac{1}{3}[8C-\pi\ln(2+\sqrt{3})]$
合計をで表すと $S$、私たちは短い証拠を持っています
$$S=\sum_{k=0}^{\infty} \int_0^1 \frac{x^{2k}}{\displaystyle (2k+1){2k \choose k}}\textrm{d}x=4\int_0^1\frac{\arcsin(x/2)}{x\sqrt{4-x^2}}\textrm{d}x=2\int_0^{\pi/6}\frac{x}{\sin(x)}\textrm{d}x$$ $$=4\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\textrm{d}x=4\operatorname{Ti}_2(2-\sqrt{3})=\frac{8}{3}G+\frac{\pi}{3}\log(2-\sqrt{3}).$$ QED
$\operatorname{Ti}_2(2-\sqrt{3})$は、ラマヌジャンによる有名な結果を使用して(また)すぐに抽出される逆正接積分の特別な値です。
$$\sum_{n=1}^{\infty} \frac{\sin(2(2n-1)x)}{(2n-1)^2}=\operatorname{Ti}_2(\tan(x))-x \log(\tan(x)), \ 0<x<\frac{\pi}{2},$$これらの詳細は、(ほぼ)不可能な積分、合計、およびシリーズのページに記載されています。$215$-$216$。
注:使用されているアークサインシリーズを明確に把握するには、次のように表現できます。$\displaystyle {2k \choose k}$ の面では $\displaystyle {2k+2 \choose k+1}$次に、シリーズのインデックスを再作成します。それで全部です。