証明する $\int_{-\pi}^\pi F_n(y) \, dy=1$
証明する $\int_{-\pi}^\pi F_n(y)\,dy=1$、と $$F_n(y)=\frac{1}{2\pi (n+1)}\frac{\sin^2 \left( \frac{(n+1)y}{2} \right)}{\sin^2(\frac{y}{2})}$$
私は同様の質問を試みましたが、そこで私は一連の関数を与えました。今回は、これを手伝ってくれるセリエがあるかどうかわかりません。私はセリエなしでそれを試しました:
\begin{align} \int_{-\pi}^{\pi}F_n(y) \, dy &= \int_{-\pi}^\pi \frac{1}{2\pi (n+1)} \frac{\sin^2\left(\frac{(n+1)y}{2}\right)}{\sin^2(\frac{y}{2})} \, dy\\ &=\int_{-\pi}^\pi \frac{1}{2\pi (n+1)}\frac{(e^{\frac{i(n+1)y}{2}}-e^{\frac{-i(n+1)y}{2}})^2}{(e^\frac{iy}{2}-e^\frac{-iy}{2})^2} \, dy\\ &=\int_{-\pi}^\pi \frac{1}{2\pi (n+1)}\frac{(e^{i(n+1)y}+e^{-i(n+1)y}-2)}{(e^{iy}+e^{-iy}-2)} \, dy \end{align}
しかし今、私は再び立ち往生しています。これを証明するもっと簡単な方法が必要だと思います。誰かが私を助けることができますか?
回答
あなたが持っている
$$F_n(x) = \frac{2\pi}{n+1}D_n^2(x)=\frac{1}{2\pi (n+1)}\left(\sum_{k=-n}^n e^{ikx} \right)^2= \frac{1}{2\pi (n+1)}\frac{\sin^2 \left(\frac{(n+1)x}{2}\right)}{\sin^2 \left(\frac{x}{2}\right)}.$$
そこから切り替えて $\int$ そして $\sum$ 平等
$$\begin{aligned}\int_{-\pi}^{\pi}F_n(x) \ dx&= \frac{1}{2\pi (n+1)}\int_{-\pi}^{\pi}\left(\sum_{k=-n}^n e^{ikx}\right)^2 \ dx\\ &= \frac{1}{2\pi (n+1)}\int_{-\pi}^{\pi}\sum_{k=-n}^n \sum_{l=-n}^ne^{i(k+l)x}\ dx\\ &= \frac{1}{2\pi (n+1)}\sum_{k=-n}^n \sum_{l=-n}^n \int_{-\pi}^{\pi}e^{i(k+l)x}\ dx\\ &=1 \end{aligned}$$
二重和のように、消えない項は $k=-l$ そしてあります $n+1$ そのような用語。
ヒント:しましょう$$D_n(x)= \sum_{k=-n}^n e^{ikx},$$ そしてしましょう $$F_N(x) = \sum_{n=0}^{N-1} D_n(x).$$ 証明してください $$ F_N(x) = \frac{1}{N}\frac{\sin^2 (Nx/2)}{\sin^2 (x/2)}.$$
$D_n$ ディリクレ核として知られています $F_N$ フェイェール核として知られています。
これはシリーズに頼らずに統合することです
\begin{align} \int_{-\pi}^{\pi}F_{n}(y)dy & = \frac1{\pi(n+1)}\int_{0}^{\pi} \frac{\sin^{2}\frac{(n+1)y}{2}}{\sin^{2}\frac{y}{2}}dy\\ & = \frac1{\pi(n+1)}\int_{0}^{\pi} \frac{ \cos(n+1)y-1}{\cos y-1} dy \\ & = \frac1{\pi(n+1)}\cdot \lim_{a\to 0}\int_{0}^{\pi} \frac{ \cos(n+1)y-\cos(n+1)a}{\cos y-\cos a} dy\\ & = \frac1{\pi(n+1)}\cdot \lim_{a\to 0}\frac{\pi\sin(n+1)a}{\sin a}\\ &=1 \end{align} ここで結果 $$\int_{0}^{\pi}{\frac{\cos(nx)-\cos(na)}{\cos x-\cos a}}dx = \frac{\pi \sin(na )}{\sin a}$$パラメトリック三角積分で導出$\int_{0}^{\pi}{\frac{\cos(nx)-\cos(na)}{\cos x-\cos a}}dx$ 使用されている。