Risolvi il sistema di disuguaglianze lineari con parametri

Aug 20 2020

Risolvi il sistema di diseguaglianze \ begin {cases} 0 \ leq \ phantom {-2 \;} x + 2 \, y-3 \, b + 3 \, a \ leq 2 \\ 0 \ leq -2 \, x -3 \, y + 6 \, b \ phantom {\; + 3a \; \,} \ leq 1 \\ [4pt] 0 \ leq x \ leq 1 \\ 0 \ leq y \ leq 2 \\ [4pt ] 0 \ leq a \ leq 1 \\ 0 \ leq b \ leq 1 \ tag {*} \ end {cases} Qui$x,y$ sono variabili sconosciute e $a,b$ sono parametri.

Il mio tentativo. Aggiungendo le disequazioni con alcuni coefficienti ho separato le variabili e ho ottenuto il semplice sistema \ begin {cases} 0 \ leq y + 6a \ leq 5, \\ 0 \ leq -x + 9a + 3b \ leq 8. \\ \ tag {**} \ end {case} e sono in grado di risolverlo. Ma le soluzioni dell'ultimo sistema non sono soluzioni del sistema iniziale!

Maple e wolframAlpha non possono risolvere il sistema.

Qualsiasi aiuto?

PS1 per $a=\frac{63}{100}$ e $b=\frac{59}{100}$ (come nella foto di G Cab sotto) Maple fornisce le soluzioni \ begin {gather *} \ left \ {x = 1, {\ frac {9} {50}} \ leq y, y \ leq {\ frac {11} {25}} \ right \}, \ left \ { x = -3 / 2 \, y + {\ frac {127} {100}}, {\ frac {9} {50}} <y, y <{\ frac {11} {25}} \ right \}, \ left \ {{\ frac {9} {50}} <y, x <1, y <{\ frac {11} {25}}, - 3/2 \, y + {\ frac {127} {100} } <x \ right \}, \ left \ {y = {\ frac {11} {25}}, {\ frac {61} {100}} \ leq x, x <1 \ right \}, \ left \ {x = -3 / 2 \, y + {\ frac {127} {100}}, {\ frac {11} {25}} <y, y <{\ frac {127} {150}} \ right \} , \ left \ {{\ frac {11} {25}} <y, x <-2 \, y + {\ frac {47} {25}}, y <{\ frac {127} {150}}, - 3/2 \, y + {\ frac {127} {100}} <x \ right \}, \ left \ {x = -2 \, y + {\ frac {47} {25}}, {\ frac {11 } {25}} <y, y <{\ frac {127} {150}} \ right \}, \ left \ {x = 0, {\ frac {127} {150}} \ leq y, y \ leq {\ frac {47} {50}} \ right \}, \ left \ {y = {\ frac {127} {150}}, x \ leq {\ frac {14} {75}}, 0 <x \ destra \}, \ sinistra \ {0 <x, {\ frac {127} {150}} <y, x <-2 \, y + {\ frac {47} {25}}, y <{\ frac {47 } {50}} \ right \}, \\ \ left \ {x = -2 \, y + {\ frac {47} {25}}, {\ frac {127} {150}} <y, y <{ \ frac {47} {50}} \ right \} \ end {gather *}

PPS Sono interessato a trovare non l'intera serie di soluzioni ma a trovare almeno una soluzione dall'area, se esiste, ma in termini $a$ e $b$, per esempio, $x=(a+b)/2, y=(2a-b)/10$ è una soluzione.

Risposte

2 YuriNegometyanov Aug 27 2020 at 00:27

Consideriamo il sistema nella forma di \ begin {cases} 6b-1 \ le 2x + 3y \ le 6b \\ 3b-3a \ le x + 2y \ le 2 + 3b-3a \\ x, y \ in [ 0,1] \ tag1 \ end {cases} sull'insieme delle possibili coppie$(a,b)\in[0,1]^2.$

$$\color{blue}{\mathbf{Case\ 1.\quad a-b >\dfrac23.}}$$

Il sistema $(1)$ non ha soluzioni.

$$\color{blue}{\mathbf{Case\,2.\quad 0\le a \le \min\left[\frac{2+3b}3,1\right].}}\tag2$$

$\color{blue}{\mathbf{Case\,2.1.\quad b\in \bigg[0,\dfrac16\bigg],\quad a\in\bigg[0,b\bigg].}}$

La prima equazione del sistema sotto forma di \ begin {cases} 0 \ le 2x + 3y \ le 6b \\ 3b-3a \ le x + 2y \ le 2 + 3b-3a \ tag {3.1} \ end {cases } sul primo quadrante definisce il triangolo con il vertice$\quad (0,0),\quad (3b,0),\quad (0,2b).$

La seconda equazione sul primo quadrante definisce il trapezio con il vertice

$(3b-3a, 0),\quad (2+3b-3a,0),\quad (0, \frac{2+3b-3a}2),\quad(0, \frac{3b-3a}2).$

Da

  • $\ 0 \le 3b-3a\le 3b \le 2+3b-3a,$

  • $\ 0 \le \frac{3b-3a}2 \le 2b \le \frac{2+3b-3a}2,$

allora la soluzione è il simplex con il vertice $(3b-3a, 0),\quad (3b,0),\quad (0,2b),\quad (0, \frac{3b-3a}2).$

Analiticamente, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{3b-3a-x}2,0\right),\frac{6b-2x}3\bigg]\bigg).\tag{4.1}$$

Soluzione per $\quad a=\dfrac1{10},\quad b=\dfrac18.$

$\color{blue}{\mathbf{Case\,2.2.\quad b\in \bigg[0,\dfrac16\bigg],\quad a\in\bigg[b,\dfrac{2+3b}3\bigg].}}$

La prima equazione del sistema sotto forma di \ begin {cases} 0 \ le 2x + 3y \ le 6b \\ 0 \ le x + 2y \ le 2 + 3b-3a \ tag {3.2} \ end {cases} over il primo quadrante definisce il triangolo con il vertice$\quad (0,0),\quad (3b,0),\quad (0,2b).$

La seconda equazione sul primo quadrante definisce il triangolo con il vertice

$(0,0),\quad (2+3b-3a,0),\quad (0, \frac{2+3b-3a}2).$

Da

  • uguaglianza $2b = \frac{2+3b-3a}2$ si verifica se $a=\frac{2-b}3,$
  • uguaglianza $3b = 2+3b-3a$ si verifica se $a=\frac{2}3,$

quindi i casi successivi dovrebbero essere considerati.

$$\color{green}{\mathbf{Case\,2.2.1.\quad b\in \left[0,\dfrac16\right],\quad a\in\bigg[b,\dfrac{2-b}3\bigg].}}$$

La soluzione è il triangolo con il vertice $\quad (0,0),\quad (3b,0),\quad (0,2b).$

Analiticamente, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[0, \frac{6b-2x}3\bigg]\bigg).\tag{4.2.1}$$

Soluzione per $\quad a\in\bigg[\dfrac1{8},\dfrac58\bigg],\quad b=\dfrac18.$

$$\color{green}{\mathbf{Case\,2.2.2.\quad b\in \left[0,\dfrac16\right],\quad a\in\bigg[\dfrac{2-b}3,\dfrac23\bigg].}}$$

Le linee $2x+3y=6b$ e $x+2y = 2+3b-3a$ hanno intersezione nel punto $(x_i,y_i) = (9a+3b-6, 4-6a).$

La soluzione è il simplex con il vertice $\quad (0,0),\quad (3b,0),\quad (9a+3b-6, 4-6a),\quad (0,\frac{2+3b-3a}2).$

Analiticamente, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[0, \min\left(\frac{2+3b-3a-x}2,\frac{6b-2x}3\right)\bigg]\bigg).\tag{4.2.2}$$

Soluzione per $\quad a = \dfrac{9}{14},\quad b=\dfrac18.$

$$\color{green}{\mathbf{Case\,2.2.3.\quad b\in \left[0,\dfrac16\right],\quad a\in\bigg[\dfrac23,\dfrac{2+3b}3\bigg].}}$$

La soluzione è il triangolo con il vertice $\quad (0,0),\quad (2+3b-3a,0),\quad (0,\frac{2+3b-3a}2).$

Analiticamente, $$\bigg(x\in\bigg[0,2+3b-3a\bigg]\bigg)\wedge\bigg(y\in\bigg[0, \frac{2+3b-3a-x}2\bigg]\bigg).\tag{4.2.3}$$

Soluzione per $\quad a = \dfrac{17}{24},\quad b=\dfrac18.$

$\color{blue}{\mathbf{Case\,2.3.\quad b\in \bigg[\dfrac16,\dfrac13\bigg],\quad a\in\bigg[0,b\bigg].}}$

La prima equazione del sistema sotto forma di \ begin {cases} 6b-1 \ le 2x + 3y \ le 6b \\ 3b-3a \ le x + 2y \ le 2 + 3b-3a \ tag {3.3} \ end {case} sul primo quadrante definisce il trapezio con il vertice$\quad (\frac{6b-1}2,0),\quad (3b,0),\quad (0,2b),\quad (0,\frac{6b-1}3).$

La seconda equazione sul primo quadrante definisce il trapezio con il vertice

$(3b-3a, 0),\quad (2+3b-3a,0),\quad (0, \frac12(2+3b-3a)),\quad (0, \frac12(3b-3a)).$

Da

  • uguaglianza $\frac{6b-1}3 = \frac{3b-3a}2$ si verifica se $a=\frac{2-3b}9,$
  • uguaglianza $\frac{6b-1}2 = 3b-3a$ si verifica se $a=\frac16,$

quindi i casi successivi dovrebbero essere considerati.

$$\color{green}{\mathbf{Case\,2.3.1.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[0,\dfrac{2-3b}9\bigg].}}$$

La soluzione è il simplex con il vertice

$(3b-3a,0),\quad (3b, 0),\quad (0,2b),\quad (0, \frac{3b-3a}2).$

Analiticamente, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{3b-3a-x}2,0\right),\frac{6b-2x}3\bigg]\bigg).\tag{4.3.1}$$

Soluzione per $\quad a=\dfrac1{12},\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.3.2.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac{2-3b}9,\dfrac16\bigg].}}$$

Le linee $2x+3y=6b-1$ e $x+2y = 3b-3a$ hanno intersezione nel punto $(x_i,y_i) = (9a+3b-2,1-6a).$

La soluzione è il simplex con il vertice

$(3b-3a,0),\quad (3b, 0),\quad (0,2b),\quad (0, \frac{6b-1}3),\quad (9a+3b-2,1-6a).$

Analiticamente, $${\small\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3, \frac{3b-3a-x}2,0\right),\frac{6b-2x}3\bigg]\bigg)}.\tag{4.3.2}$$

Soluzione per $\quad a=\dfrac3{19},\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.3.3.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac16,b\bigg].}}$$

La soluzione è il trapezio con il vertice

$(3b,0),\quad (3b-3a, 0),\quad (0, \frac{3b-3a}2),\quad (0,2b).$

Analiticamente, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\frac{6b-2x}3\bigg]\bigg).\tag{4.3.3}$$

Soluzione per $\quad a=\dfrac15,\quad b=\dfrac14.$

$\color{blue}{\mathbf{Case\,2.4.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[b,b+\dfrac23\bigg].}}$

La prima equazione del sistema sotto forma di \ begin {cases} 6b-1 \ le 2x + 3y \ le 6b \\ 0 \ le x + 2y \ le 2 + 3b-3a \ tag {3.4} \ end {cases }

sopra il primo quadrante definisce il trapezio con il vertice $\quad (\frac{6b-1}2,0),\quad (3b,0),\quad (0,2b),\quad (0,\frac{6b-1}3).$

La seconda equazione sul primo quadrante definisce il triangolo con il vertice

$(0,0),\quad (2+3b-3a,0),\quad (0, \frac{2+3b-3a}2).$

Da

  • uguaglianza $2b = \frac{2+3b-3a}2$ si verifica se $a=\frac{2-b}3,$

  • equlaity $3b = 2+3b-3a$ si verifica se $a = \frac23,$

  • equità $\frac{6b-1}3 = \frac{2+3b-3a}2$ si verifica se $a=\frac{8-3b}9,$

  • equità $\frac{6b-1}2 = 2+3b-3a$ si verifica se $a=\frac56,$

quindi i casi successivi dovrebbero essere considerati.

$$\color{green}{\mathbf{Case\,2.4.1.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[0,\dfrac{2-b}3\bigg].}}$$

La soluzione è il trapezio del paragrafo $2.3.3$ sopra.

$$\color{green}{\mathbf{Case\,2.4.2.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac{2-b}3,\dfrac23 \bigg].}}$$

Le linee $2x+3y=6b$ e $x+2y = 2+3b-3a$ hanno intersezione nel punto $(x_i,y_i) = (9a+3b-6,4-6a).$

La soluzione è il simplex con il vertice

$(\frac{6b-1}2,0),\quad (3b, 0),\quad (9a+3b-6,4-6a),\quad (0,\frac{2+3b-3a}2),\quad (0, \frac{6b-1}3).$

Analiticamente, $${\small\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\min\left(\frac{2+3b-3a-x}2,\frac{6b-2x}3\right)\bigg]\bigg)}.\tag{4.4.2}$$

Soluzione per $\quad a=\dfrac58,\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.4.3.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac23,\dfrac{8-3b}9 \bigg].}}$$

La soluzione è il simplex con il vertice

$(\frac{6b-1}2,0),\quad (2+3b-3a, 0),\quad (0,\frac{2+3b-3a}2),\quad (0, \frac{6b-1}3).$

Analiticamente, $${\small\bigg(x\in\bigg[0,2+3b-3a\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\frac{2+3b-3a-x}2\bigg]\bigg)}.\tag{4.4.3}$$

Soluzione per $\quad a=\dfrac34,\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.4.4.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac{8-3b}9,\dfrac56 \bigg].}}$$

Le linee $2x+3y=6b-1$ e $x+2y = 2+3b-3a$ hanno intersezione nel punto $(x_i,y_i) = (9a+3b-8,5-6a).$

La soluzione è il triangolo con il vertice

$(\frac{6b-1}2,0),\quad (2+3b-3a, 0),\quad (9a+3b-8,5-6a).$

Analiticamente, $${\small (x\in[9a+3b-8,2+3b-3a])\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\frac{2+3b-3a-x}2\bigg]\bigg)}.\tag{4.4.4}$$

Soluzione per $\quad a=\dfrac{14}{17},\quad b=\dfrac14.$

4 GCab Aug 22 2020 at 06:02

Quando hai un sistema di (doppie) disuguaglianze come questo $$ \left\{ \matrix{ a \le x \le b \hfill \cr c \le x \le d \hfill \cr} \right. $$ potresti pensare che ognuno rappresenti un segmento su $x$ asse, con il sistema che sta per AND, cioè $$ \eqalign{ & \left\{ \matrix{ x \in \left[ {a,b} \right] \hfill \cr x \in \left[ {c,d} \right] \hfill \cr} \right.\quad \Rightarrow \quad x \in \left( {\left[ {a,b} \right] \cap \left[ {c,d} \right]} \right)\quad \Rightarrow \cr & \Rightarrow \quad x \in \left[ {\max (a,c),\min \left( {b,d} \right)} \right] \cr} $$

Pertanto nel tuo caso possiamo fare alcune manipolazioni come segue $$ \eqalign{ & \left\{ \matrix{ 0 \le x + 2y + 3a - 3b \le 2 \hfill \cr 0 \le - 2x - 3y + 6b \le 1 \hfill \cr 0 \le x \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr} \right. \Rightarrow \cr & \Rightarrow \left\{ \matrix{ 3\left( {b - a} \right) \le x + 2y \le 3\left( {b - a} \right) + 2 \hfill \cr 6b - 1 \le 2x + 3y \le 6b \hfill \cr 0 \le x \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr} \right. \Rightarrow \cr & \Rightarrow \left\{ \matrix{ 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr 3\left( {b - a} \right) \le x \le 3\left( {b - a} \right) + 2 - 2y \hfill \cr 3b - 1/2 - 3/2y \le x \le 6b - 3/2y \hfill \cr 0 \le x \le 1 \hfill \cr} \right. \Rightarrow \cr & \Rightarrow \left\{ \matrix{ 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr m = \max \left( {3\left( {b - a} \right),3b - 1/2 - 3/2y,0} \right) \hfill \cr n = \min \left( {3\left( {b - a} \right) + 2 - 2y,\;6b - 3/2y,\;1} \right) \hfill \cr m \le x \le n \hfill \cr} \right. \cr} $$

dove al terzo passaggio abbiamo scelto di isolare il file $x$, ma ovviamente avremmo potuto farlo con $y$ in questo caso ottenendo $$ \left\{ \matrix{ 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr 0 \le x \le 1 \hfill \cr m = \max \left( {3/2\left( {b - a} \right) - x/2 2b - 1/3 - 2/3x 0} \right) \hfill \cr n = \min \left( {3/2\left( {b - a} \right) + 1 - x/2 \;2b - 2/3x \;2} \right) \hfill \cr m \le y \le n \hfill \cr} \right. $$

Quindi, una volta risolto $a, \; b, \; y$ entro l'intervallo consentito, possiamo finire di calcolare $x$ nel primo caso, o viceversa nella seconda versione.

Il sistema abbozzato in Geogebra dà

nota in risposta al tuo commento

Come puoi vedere dallo schizzo, le soluzioni (quando esistono) definiranno in generale un'area 2D.
Riferendosi al caso raffigurato, una volta risolto$a$ e $b$, puoi descrivere l'area avendo il $y$ per coprire l'intervallo consentito $[0,2]$ e di conseguenza determinare $x$essere entro due limiti, necessariamente dipendenti da$y$.
Non è possibile esprimere i limiti$x$ e $y$ indipendentemente l'uno dall'altro.

esempio con $a=0.63 ,\; b=0.59$

$$ \begin{array}{l} \left\{ \begin{array}{l} a = 0.63 \\ b = 0.59 \\ 0 \le y \le 2 \\ m = \max \left( { - 0.12,1.27 - 3/2y,0} \right) \\ n = \min \left( {1.88 - 2y,\;3.54 - 3/2y,\;1} \right) \\ m \le x \le n \\ \end{array} \right.\;\; \Rightarrow \\ \Rightarrow \left\{ \begin{array}{l} 0 \le y \le 2 \\ \begin{array}{*{20}c} {1.27 - 3/2y \le x \le 1} \hfill & {\left| {\;0 \le y < 0.44} \right.} \hfill \\ {1.27 - 3/2y \le x \le 1.88 - 2y} \hfill & {\left| {\;0.44 \le y < 2.54/3} \right.} \hfill \\ {0 \le x \le 1.88 - 2y} \hfill & {\left| {\;2.54/3 \le y < 0.94} \right.} \hfill \\ {0 \le x \le 1.88 - 2y\; \to \;\emptyset } \hfill & {\left| {\;0.94 \le y \le 2} \right.} \hfill \\ \end{array} \\ \end{array} \right.\; \Rightarrow \\ \Rightarrow \left\{ {\begin{array}{*{20}c} {1.27 - 3/2y \le x \le 1} \hfill & {\left| {\;0.18 \le y < 0.44} \right.} \hfill \\ {1.27 - 3/2y \le x \le 1.88 - 2y} \hfill & {\left| {\;0.44 \le y < 2.54/3} \right.} \hfill \\ {0 \le x \le 1.88 - 2y} \hfill & {\left| {\;2.54/3 \le y < 0.94} \right.} \hfill \\ \end{array}} \right. \\ \end{array} $$

La seconda versione invece dà il risultato più semplice $$ \left\{ \matrix{ a = 0.63 \hfill \cr b = 0.59 \hfill \cr 0 \le x \le 1 \hfill \cr m = \max \left( { - 0.06 - x/2,1.18 - 1/3 - 2/3x,0} \right) = \hfill \cr = 1.18 - 1/3 - 2/3x \hfill \cr n = \min \left( {0.94 - x/2,\;1.18 - 2/3x,\;2} \right) = \hfill \cr = 0.94 - x/2 \hfill \cr m \le y \le n \hfill \cr} \right. $$

addendum

Non colgo adeguatamente la tua esigenza, ma in ogni caso introdurrò un approccio più geometrico al problema che potrebbe offrire una visione diversa delle soluzioni.

Ogni doppia disuguaglianza rappresenta una striscia compresa tra due linee parallele con separazione costante. Le due strisce si sovrappongono a definire un parallelogramma, che viene appena traslato mantenendo inalterata la sua forma.

Le coordinate dei quattro vertici sono $$ \begin{array}{c|cccc} {} & & {Vsi} & {Vss} & {Vii} & {Vis} \\ \hline x & & {9a + 3b - 8} & {9a + 3b - 6} & {9a + 3b - 2} & {9a + 3b} \\ y & & { - 6a + 5} & { - 6a + 4} & { - 6a + 1} & { - 6a} \\ \end{array} $$ Ora, fino alla x di $Vsi$ è più grande di $1$ l'intero parallelogramma $P$ sarà fuori dal rettangolo $R = [0,1] \times [0,2]$.
Lo stesso se la y di$Vsi$è inferiore a zero. Quindi per avere soluzioni deve essere$$ \eqalign{ & \left\{ \matrix{ 0 \le b \le 2 \hfill \cr 0 \le a \le 1 \hfill \cr 9a + 3b - 8 \le 1 \hfill \cr 0 \le - 6a + 5 \hfill \cr} \right.\quad \Rightarrow \quad \left\{ \matrix{ 0 \le b \le 2 \hfill \cr 0 \le a \le 1 - b/3 \hfill \cr a \le 5/6 \hfill \cr} \right.\quad \Rightarrow \cr & \Rightarrow \quad \left\{ \matrix{ 0 \le b \le 1/2\; \wedge \;0 \le a \le 5/6 \hfill \cr 1/2 < b \le 2\; \wedge \;0 \le a \le 1 - b/3 \hfill \cr} \right. \cr} $$Si noti che quanto sopra è una condizione necessaria ma non sufficiente. Questo perché quando il vertice superiore è nel secondo quadrante dobbiamo ancora imporlo$P$ interseca $R$, che è tanto complicato quanto utilizzare le precedenti condizioni min / max.

1 SanghwaLee Aug 20 2020 at 10:22

$9a+3b-8\leq x \leq9a+3b$

$-6a \leq y \leq 5-6a$

Queste sono le equazioni e ci sono dei vincoli

$0≤x≤1$

$0≤y≤2$

$0≤a≤1$

$0≤b≤1$

L'intersezione può esistere o meno a seconda di a e b.

Il grafico aiuterà:

https://www.desmos.com/calculator/9dbajg4hcx

La parte blu è il risultato e la parte verde sono vincoli.