tensorflow load data: dati di marshalling errati

Aug 19 2020

Voglio caricare FaceNet in Keras ma ricevo errori. il modal facenet_keras.h5 è pronto ma non riesco a caricarlo.

puoi ottenere facenet_keras.h5 da questo link:

https://drive.google.com/drive/folders/1pwQ3H4aJ8a6yyJHZkTwtjcL4wYWQb7bn

La mia versione di tensorflow è:

tensorflow.__version__

"2.2.0"

e quando voglio caricare i dati:

from tensorflow.keras.models import load_model
load_model('facenet_keras.h5')

ottieni questo errore:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-6-2a20f38e8217> in <module>
----> 1 load_model('facenet_keras.h5')

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/save.py in load_model(filepath, custom_objects, compile)
    182     if (h5py is not None and (
    183         isinstance(filepath, h5py.File) or h5py.is_hdf5(filepath))):
--> 184       return hdf5_format.load_model_from_hdf5(filepath, custom_objects, compile)
    185 
    186     if sys.version_info >= (3, 4) and isinstance(filepath, pathlib.Path):

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
    175       raise ValueError('No model found in config file.')
    176     model_config = json.loads(model_config.decode('utf-8'))
--> 177     model = model_config_lib.model_from_config(model_config,
    178                                                custom_objects=custom_objects)
    179 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/model_config.py in model_from_config(config, custom_objects)
     53                     '`Sequential.from_config(config)`?')
     54   from tensorflow.python.keras.layers import deserialize  # pylint: disable=g-import-not-at-top
---> 55   return deserialize(config, custom_objects=custom_objects)
     56 
     57 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/serialization.py in deserialize(config, custom_objects)
    103     config['class_name'] = _DESERIALIZATION_TABLE[layer_class_name]
    104 
--> 105   return deserialize_keras_object(
    106       config,
    107       module_objects=globs,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    367 
    368       if 'custom_objects' in arg_spec.args:
--> 369         return cls.from_config(
    370             cls_config,
    371             custom_objects=dict(

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in from_config(cls, config, custom_objects)
    984         ValueError: In case of improperly formatted config dict.
    985     """
--> 986     input_tensors, output_tensors, created_layers = reconstruct_from_config(
    987         config, custom_objects)
    988     model = cls(inputs=input_tensors, outputs=output_tensors,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in reconstruct_from_config(config, custom_objects, created_layers)
   2017   # First, we create all layers and enqueue nodes to be processed
   2018   for layer_data in config['layers']:
-> 2019     process_layer(layer_data)
   2020   # Then we process nodes in order of layer depth.
   2021   # Nodes that cannot yet be processed (if the inbound node

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in process_layer(layer_data)
   1999       from tensorflow.python.keras.layers import deserialize as deserialize_layer  # pylint: disable=g-import-not-at-top
   2000 
-> 2001       layer = deserialize_layer(layer_data, custom_objects=custom_objects)
   2002       created_layers[layer_name] = layer
   2003 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/serialization.py in deserialize(config, custom_objects)
    103     config['class_name'] = _DESERIALIZATION_TABLE[layer_class_name]
    104 
--> 105   return deserialize_keras_object(
    106       config,
    107       module_objects=globs,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    367 
    368       if 'custom_objects' in arg_spec.args:
--> 369         return cls.from_config(
    370             cls_config,
    371             custom_objects=dict(

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/core.py in from_config(cls, config, custom_objects)
    988   def from_config(cls, config, custom_objects=None):
    989     config = config.copy()
--> 990     function = cls._parse_function_from_config(
    991         config, custom_objects, 'function', 'module', 'function_type')
    992 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/core.py in _parse_function_from_config(cls, config, custom_objects, func_attr_name, module_attr_name, func_type_attr_name)
   1040     elif function_type == 'lambda':
   1041       # Unsafe deserialization from bytecode
-> 1042       function = generic_utils.func_load(
   1043           config[func_attr_name], globs=globs)
   1044     elif function_type == 'raw':

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in func_load(code, defaults, closure, globs)
    469   except (UnicodeEncodeError, binascii.Error):
    470     raw_code = code.encode('raw_unicode_escape')
--> 471   code = marshal.loads(raw_code)
    472   if globs is None:
    473     globs = globals()

ValueError: bad marshal data (unknown type code)

grazie.

Risposte

1 TensorflowSupport Aug 23 2020 at 12:02

Le possibili soluzioni a questo errore sono mostrate di seguito:

  1. L' Modelpotrebbero essere stati costruiti e salvati in Python 2.xe si potrebbero utilizzare Python 3.x. La soluzione è utilizzare lo stesso Python Versionutilizzo di cui Modelè stato Builte Saved.

  2. Usa la stessa versione di Keras(and, may be, tensorflow), su cui era il tuo modello Builte Saved.

  3. Il Saved Modelpotrebbe contenere oggetti personalizzati. In tal caso, è necessario caricare il modello utilizzando il codice,

    new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})

  4. Se puoi ricreare il architecture(cioè hai il codice originale usato per generarlo), puoi istanziare il modelda quel codice e poi usare model.load_weights('your_model_file.hdf5')per caricare i pesi. Questa non è un'opzione se non hai il codice utilizzato per creare l'originale architecture.

Per maggiori dettagli, fai riferimento a questo problema di Github . Per maggiori dettagli su Saving and Loading the Modelcon Custom Objects, fare riferimento a questa documentazione di Tensorflow e questa risposta di overflow dello stack .